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Abstract

The Guide to the Expression of Uncertainty in Measurement (GUM) defines standard measurement uncertainty as the
standard deviation of a probability distribution that describes the uncertainty associated with an estimate of the measurand,
and defines expanded uncertainty as a multiple of the standard uncertainty. Monte Carlo methods can produce the expanded
uncertainty for 95% coverage as one half of the length of the interval whose endpoints are the 2.5" and 97.5" percentiles
of the probability distribution of the estimate of the measurand (when this distribution is approximately symmetrical). This
creates an opportunity for a paradox to arise: that the standard uncertainty, defined as a standard deviation, can be larger
than the expanded uncertainty. We provide an example involving real measurement data where this paradox arises with high
probability, and then offer a new definition of standard uncertainty that agrees numerically with the conventional definition
in “normal” cases, but that is still reliable in “abnormal” cases.
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1. Introduction

The Guide to the Expression of Uncertainty in Mea-
surement (GUM) [1] defines standard measurement
uncertainty (for scalar measurands) as the standard
deviation of a probability distribution that describes
the uncertainty associated with an estimate of the
measurand, and it defines expanded uncertainty as
a multiple of the standard uncertainty.

With the advent of Monte Carlo methods for un-
certainty propagation, and with the increasing use that
is being made of statistical models and methods to
characterize measurement uncertainty, it is now fairly
common to obtain the expanded uncertainty “directly,”
not as a multiple of the standard uncertainty.

For example, the expanded uncertainty for 95%
coverage can be obtained as one half of the length
of the interval whose endpoints are the 2.5" and
97.5™ percentiles of the probability distribution of the
estimate of the measurand (when this distribution is
approximately symmetrical).

This creates an opportunity for a paradox to arise:
that the standard uncertainty, defined as a standard
deviation, can be larger than the expanded uncertainty,
defined in terms of percentiles as exemplified above.

In this contribution we provide an example of
a situation involving real measurement data where
this paradox arises with very high probability, and
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then use it as motivation to offer a new definition of
standard uncertainty that agrees numerically with the
conventional definition in “normal” cases, but that will
still be reliable in “abnormal” cases, and that will also
resolve the paradox aforementioned.

Our proposal is to redefine standard measurement
uncertainty u(y) as half the length of a 68% coverage
interval centered at y. Defined in this way, u(y) rep-
roduces the standard deviation when y has a Gaussian
probability distribution, and the meaning of y+u(y) is
independent of the underlying probability distribution.

2. Meaning of Standard Uncertainty

Measurement results are often expressed in the form
y+u(y), where y denotes the measured value and u(y)
denotes the associated standard uncertainty. However,
the meaning of such expression of measurement
uncertainty is contingent on the probability distribu-
tion of the measurand (Fig. 1). For example, if y has
a uniform (or rectangular) distribution on interval
[0,1], then the interval y+u(y) has 55.7% coverage
probability.

The standard deviation can provide a misleading
expression of the dispersion of a distribution. Consider
a discrete distribution Q that we call the Dolos
Distribution because, in classical Greek mythology
Dolos is the god of trickery, and a master of craftiness.
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Fig. 1. Different distributions can have the same standard deviation and assign different probabilities to an interval of the
form mean plus or minus one standard deviation
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Fig. 2. Dolos's distribution

This distribution has four atoms placed symmetrically
around zero, at -100, -1, +1, and +100, and assigns
to them the following probabilities. Let y:2.5/ V2 s
and define p=1/(2y*) and ¢g=1-p. Now, put
0({-100}) = O({+100}) = p, and Q({-1}) = O({+1}) =¢.
These probabilities are depicted in Fig. 2.

If Q characterizes the uncertainty associated with
a measured value of 0, then the corresponding stan-
dard measurement uncertainty is 1 while Q’s standard
deviation is 56.57. The former is very accurately
informative, while the latter is rather misleading.

The standard deviation can be infinite. Consider
the situation depicted in Fig. 3, where a horizontal
light beam emerges from a small hole in a wall and
travels along a 1 m long path at right angles to the
wall, towards a flat mirror that oscillates freely around
a vertical axis.

When the mirror’s surface normal makes an angle A
with the beam, its reflection hits the wall at distance
D=tan(A) from the hole (positive to the right of the
hole and negative to the left). If A is uniformly (or, rec-
tangularly) distributed between —n/2 rad and n/2 rad,
then Pr(D < d)=Pr[4 < arctan(d)] = [arctan(d) + =/ 2]/,
and D’s probability density is p, such that
po(d)=1/[rn(1+d?)] for —co<d<+oo,

As it turns out, both the mean and the standard
deviation of D are infinite [2, Page 51], but if the standard
uncertainty u(D) is defined as one half of the length
of the interval such that Pr[-u(D)< D <+u(D)]=0.68,
as proposed above, then u(D)=1.82 m. The infinite
standard deviation is useless, while the standard
measurement uncertainty tells us that the reflected

beam stays within 1.82 m of the exit hole 68% of the
time.

3. Paradox of the U’s

Consider the following measurement results:
w,=34.3mg/kg, w,=32.9mg/kg, and w,=31.9mg/kg,
with expanded uncertainties (for 95% coverage)
U =13.1mg/kg, U,=8.8mg/kg, and U,=5.1mg/kg,
each based on a single degree of freedom. Since the
expanded uncertainties all are based on the same num-
ber of degrees of freedom, and all have the same cove-
rage probability, the weighted average of the measured va-
luesis @ = (W /UE +w, /U3 +w3 /U /(JUE +1/U3 +1/U3).
These results are mutually consistent, and their weig-
hted average is 32.4 mg/kg.

To evaluate u(a) and U, (a) we model each mea-
sured value as an outcome of a rescaled and shifted
Student’s # random variable with 1 degree of freedom,
and interpret the corresponding expanded uncertainty
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Fig. 3. Reflection of light beam by oscillation mirror
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as being half the length of the interval whose end-
points are the 2.5 and 97.5" percentiles of this distri-
bution.

The following R [3] code implements the pro-
pagation of these distributions according with the
GUM Supplement 1 [4] to obtain a sample of size K
from the probability distribution of @, and to derive the
associated standard and expanded uncertainties from
this sample.

x=c(34.3,32.9,31.9); U=c(13.1, 8.8,5.1);
nu=c(1,1,1)

w=(1/U"2)/sum(1/U"2)

a = sum(w*x)

K =1e5; aB =numeric(K)

sigma=U/qt(0.975, nu)

for (k in 1:K)

{
xB = x + sigma*rt(n, df=nu)
aB[k] = sum(w*xB)
}
ua=sd(aB); U95a=diff(quantile(aB,

probs=c(0.025, 0.975)))/2
names(U95a) =NULL; c("u(a)"=ua,
"U95(a)"=U95a)

The standard deviation of the weighted average
in a Monte Carlo sample of size 1000 happened to
be 27mg/kg, and U, (a) = 6.5 mg/kg (half the diffe-
rence between the 97.5" and 2.5" percentiles of the
Monte Carlo sample). Therefore, for this particular
Monte Carlo sample, is the standard uncertainty is
defined as the standard deviation, then it will be larger
than the expanded uncertainty for 95% coverage. Fig.4
shows the corresponding probability density estimate.
This paradoxical behavior is not a fluke. In fact,
with K=1000, u(a) will be greater than U, (a) with
probability 96.1%. And this is so only because K is
finite, because a actually has infinite standard deviation,
while the expanded uncertainty, as interpreted here, is
finite and meaningful.
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Fig. 4. Monte Carlo probability distribution of weighted average A

Since, in this case, the weighted average A has
a symmetric distribution, if we define u(A4) as half
the difference between 82" and 16" percentiles of
A’s distribution, then we obtain u(4) =1 mg/kg and
U, (A) =6.5 mg/kg, which resolves the paradox.

4. Conclusions

The meaning of u(y) as a standard deviation, and
the coverage of an interval like y+u(y), are strongly
dependent on the underlying probability distribution.
The standard uncertainty, defined as standard deviation
of the probability distribution of the measurand, can
be (much) larger than expanded uncertainty, as il-
lustrated in the paradox of the U’s. Furthermore, the
standard deviation can be a misleading indication of
the dispersion of a distribution, or it can be infinite,
while the redefined standard uncertainty continues to be
informative and meaningful even in the rather abnormal
situations described in section 2.

Therefore, we propose that standard measurement
uncertainty u(y) be redefined as half the length of a 68%
coverage interval centered at y. Defined in this way, u(y)
reproduces the standard deviation when y has a Gaussian
probability distribution, and the meaning of yzu(y) is
independent of the underlying probability distribution.
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AnoTauis

GUM Bu3Hauae CTaHAAPTHY HEBU3HAYEHICTh BUMIPIOBAHHS K CTAaHJAPTHE BiIXWJIEHHS PO3IOALTY HMOBIpHOCTEN, 1110

OIKCYE HEBM3HAYEHICTh, MTOB’SI3aHY 3 OILIIHKOIO BUMipIOBaHOI BEJWYMHM, i BUSHAUYAE PO3IIMPEHY HEBU3HAUCHICTh K KPaTHY
CTaHAApTHi HeBU3HaueHocTi. MeToau MoHTe-Kapio MoXyTh OLIIHUTH PO3IIMPEHY HEBU3HAYEHICTD SIK MOJIOBUHY JOBXUHU
95% iHTepBaly HEBM3HAYEHOCTI, KiHIIEBUMU TOYKAMU SIKOTO € 2,5-11 i 97,5-i1 mepleHTI1i po3Ioaily WMOBIPHOCTE! OLIIHKU
BUMIpIOBaHOI BeJIMYMHU (KOJU IIeil PO3MOMAiN € MPUOIN3HO CUMeTpUYHUM). Lle cTBOpioe MOXIMBICTH IJII BUHUKHEHHS
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MapasoKCy: CTaHAapTHA HEBM3HAUEHICTh, BU3HAUYeHA SIK CTAHAApPTHE BIOAXWUJIEHHS, MOXe OyTW OiNbIIOI0 32 PO3MIMpPEHY
HEeBU3HAUEHICTh. MM HagaeMo MPUKIAL i3 peaJbHUMU JAaHUMM BUMIiplOBaHb, J¢ 1€l MapaloKC BUHUKAE 3 BUCOKOIO
MMOBIPHICTIO, a TMOTIM MPOMOHYEMO HOBE BU3HAUYEHHSI CTAHAAPTHOI HEBM3HAYEHOCTI, SIKE UYMCEIbHO Y3TOIXKYEThCS 3i
3BUYAiHUM BU3HAUYEHHSIM Y BUMAIKY HOPMAJIbHOIO PO3MOMiNY, i 3aJIMIIAETHCS TOCTOBIPHUM TaKOX ISl iHIIUMX PO3IMOALJIiB.

KniouoBi cioBa: craHgapTHe BiIXWJIEHHS; MEPUEHTWII PO3MOMINY; MapagoKc; KoedillieHT MOKPUTTS; HOPMaJbHUI
posnoain; posnoain Jlooca.

Hepeonpezle.ﬂenne CTaH,ZlapTHOﬁ HeolnpeaeJ e HHOCTU
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AHHOTaUMsA

GUM ormpenensier cTaHIAPTHYIO HEOMPENeJeHHOCTh M3MEPEeHHUsI KaK CTaHAApTHOE OTKJIIOHEHUWE pacrpelneieHust
BEPOSITHOCTEM, OMUCHIBAIOLIEE HEOIMPEAEICHHOCTb, CBI3aHHYIO C OLIEHKOW W3MEpsSeMOil BEJIWYUHBI, U OIMpPEIeseT
pacIIMPEHHYIO HEONPeaeIEHHOCTh KaK KPaTHYIO CTaHIAPTHOU HeompeaeaeHHOcTH. Metoasl MoHnTe-Kapiao MoryT oueHuTh
pacuIMpeHHYI0 HeoNpelnesieHHOCTh KaK MOJOBUMHY IUIMHBI 95% WHTepBajla HEONpenesieHHOCTH, KOHEYHBIMU TOYKAMU
KOTOPOTO SIBNSAIOTCS 2,5-11 U 97,5-i1 MPOUEHTUIM pacripeieJieHUs] BEpOSITHOCTEN OLIEHKM U3MEpPSieMOii BeJMYMHBI (Koraa
9TO pacrpelenieHNe SIBISIETCS] MMPUMEPHO CUMMETPUYHBIM). DTO CO3MaeT BO3MOXHOCTH [UISI BOSHMKHOBEHHSI TMapamokca:
CTaHIapTHAsl HEONpPENeIeHHOCTb, OIpe/esieHHas KaK CTaHAapTHOEe OTKJIOHEHUE, MOXET ObITh 0OJibllie pacIIMPeHHON
HeomnpeaeaeHHOCTU. Mbl TPUBOIUM MPUMEDP C peaIbHBIMU JaHHBIMU U3MEPEHU, I1ie 3TOT MapaJoKCc BO3ZHUKAET C BHICOKOM
BEPOSITHOCTBIO, A 3aTeM IIpeljlaraéM HOBOE OIpENeIeHUE CTAaHAAPTHON HEONPENEIEeHHOCTH, YMCIEHHO COIJacylouieecs
C OOBIYHBIM OINpeneJeHWeM B CJIydyae HOPMaJIbHOTO pacIpenesieHusl, U OCTAeTCsl AOCTOBEPHBIM Takxke sl IPYTUX
pacnpeneseHui.

KiioueBbie €j10Ba: CTAHZAPTHOE OTKJIOHEHWE; MPOLEHTWINA DPACIpeNeeHus; Mapagoke; KO3(MOULUEHT MOKPBITHS;
HOpMaJIbHOE pacrpee/icHue; pacrnpeaeneHue Jlonoca.
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