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Abstract

If a number of observations about a certain quantity may be assumed independent, drawn from a Gaussian distribution,
Supplement 1 to the GUM recommends that the standard uncertainty associated with the quantity be obtained by a formula
that is applied to more than three observations. Various articles have recently appeared proposing Bayesian methods to
surmount this limitation. Some of these methods, which require prior knowledge about the quantity, are reviewed in this

article.
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1. Introduction

When data {x,,x,,...,x,} about a certain quan-
tity are available, the GUM [1] proposes that
their mean, X, be taken as the estimate of the
quantity and that their standard uncertamty, Ugums

be calculated as s/<n, where § =—Z(x -x)°

This procedure is based on frequentlst concepts.
Instead, based on the Bayesian paradigm, Supple-
ment 1 to the GUM [2] recommends calculating

n—

=0 ugyy, where ¢= This formula

Ugumst
n—

is applied only to independent data, obtained from
a Gaussian distribution, neglecting any prior know-
ledge about the measurand that might be avai-
lable. Obviously, evaluating ¢ requires at least four
observations.

Below, we review some of the recently appeared
proposals for obtaining the standard uncertainty, which
are valid for any number of observations.

2. Proposals — 1

Reference [3] appears to be the first paper to
propose solving the problem by taking advantage of
the knowledge available before measurements.
Its authors applied Bayes’ formula to a Gaussian
likelihood and informative prior proportional to 1/v
for v, <v<v, ., where v is the unknown variance

of a Gaussian distribution.
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Using clever manipulations, they could derive an
analytic expression for factor ¢ involving the upper
incomplete gamma function. Results can be easily
obtained using the Wolfram Mathematica® software

(Fig. 1).

n=2; X={0.9551, 0.9537}; mean = Mean[x];
s = StandardDeviation[x]; sM = ©.003; sm = ©.001;
S=(n-1) s?;
n-3 . n-1 S S
as = ; ais= y a= 3 b=
2 2 2 sM? 2sm?
n-1 Gamma[as, a] - Gamma[as, b]

.
3
1/2

phi:

2 Gamma[ai, a] - Gamma[ai, b]

S
uGum = H
n

uCs = phi uGum;

Print["uCS =", uCs]
Print["uGum =", uGum]
uGum = 0.0007

ucs - 0.0012686

Fig. 1. Example 4.3 in [3]

Alternatively, one can use a direct numerical
application of Bayes’ theorem. In Fig. 2, p0[*]
is the prior, 1[*] is the likelihood, pl[-*]
the joint posterior, p2[<] is the unnormalized
marginal posterior and c is the normalization
constant.
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1
pe[mu_, v_] := I-F[sm2 svssM, =, 9]
v

1 S +n (mu - mean)?
i1(mu_, v_] := —— EXp|- c————
n/2 [ ]

v

2v
pl[mu_, v_] :=p@[mu, v] «1[mu, v]
p2[mu_] := NIntegrate[pl[mu, vl, {v, sm%, st}]
c = (Quiet[NIntegrate[p2[mu], {mu, -®, ©}]11)";
expec = Quiet [NIntegrate[mucp2[mu], {mu, -o, ®}]1;
stdev =
(Quiet [NIntegrate[ (mu - expec)? c p2[mu], {mu, -co, m}} ] ) 12,
unum = stdev;
Print["unum = ", unum]

Print["uCS = ", uCs]
uCs = 8.0012686
0.00126859

unum =

Fig. 2. Example 4.3 in [3] using numerical integration

The method in [3] requires n>2. However, the
numerical procedure is applied even to one observation
(Fig. 3).

x = ©.9551;

1
pe[mu_, v_] := If[smzs vssM?, =, B]
v

1 (mu - x)?
1[mu_, v_] := m Exp[—T]
pl[mu_, v_] := p@[mu, v] «1[mu, v]

p2[mu_] := NIntegrate[pl[mu, v], {v, sm?, st}]

c = (Quiet [NIntegrate[p2[mu], {mu, -c, ©}]1])"%;
expec = Quiet [NIntegrate[muc p2[mu], {mu, -o, ®}]];
stdev =
172,

(Quiet [NIntegr‘ate[{mu—expec)ch2[mu], {mu, -co, oo}]]) ;
Print["u 1 obs = ", stdev]
Pr-int["u 2o0bs =", uCS]
u 2 obs = 9.0012686
u 1l obs = 0.0@190813

Fig. 3. Example 4.3 in [3] considering only one observation

3. Proposals — 2

In [4], its author proposes using a half-Cauchy prior
for the standard deviation, that is, a #-Student with one
degree of freedom. Such a prior can be written in the
form p(p,v)oc(4+v)"', where 4 is the constant. This
median of the distribution can be equal to any available
prior estimate of the variance. In this way, a reasonable
value for A can be obtained. The resulting posterior
does not have any closed form. Of course, it can be
evaluated by MCMC, as proposed in [4]. However, as
the following example demonstrates, it is simpler (and
faster) to use the numerical procedure just described
(Fig. 4).

4. Proposals — 3

Reference [5] is applied to measurement models
of the form Y=aX+ B, where B represents a linear
combination of type B quantities. However, by taking
B =10 (and a = 1), we recover our measurement model.
The authors of [5] assume an inverse gamma prior for
the variance of the sampling distribution of repeated
measurements of X. If we neglect previous knowledge
about the measurand value, the prior becomes

P
V] V]

X = {0.9551, ©.9537};
sMsm |2 m
m= ( ) s A=
sM + sm _1+ e
1 S +n (mu - mean)?
EX| [-—
2v

pl[mu_, v_] :=p@[mu, v] ~1[mu, v]

p2[mu_] := NIntegrate[pl[mu, v], {V, 0, =}]

c = (Quiet[NIntegrate[p2[mu], {mu, -c, ©}]])"%;
expec = Quiet [NIntegrate[mucp2[mu], {mu, -, ©}]];
stdev =

pe[mu_, v_] := (A+v)*

3

limu_, v_] :=

vn/z

(Quiet [NIntegrate[ (mu - expec)?cp2[mu], {mu, -w, }]]) 12,

uCauchy = stdev;
Print [ “uCauchy » uCauchy]
Print["uCS = ", uCs]
uCs = ©.0012686
0.531866

on.

uCauchy

Fig. 4. Example 4.3 in [3] using half-Cauchy prior

The authors of [5] propose using a = 1, which
gives a weakly informative prior with neither finite
mean nor variance. With this choice, the median of
the distribution, which is equal to b/In2, can again
be taken as the prior estimate of the variance, if
available. In this way, the value of parameter b is
obtained (Fig. 5).

X = {0.9551, ©.9537}; a=1;

sMsm 1 b
m= 5 b=mLog[2]; pe[mu_,v_] := Exp[-—]
sM + sm yita v
1 S+n (mu-mean)?
limu_, v_] := Exp -—]
Vn/2 2v

pl[mu_, v_] :=p@[mu, v] »1[mu, v]

p2[mu_] := NIntegrate[pl[mu, v], {V, 0, x}]

c = (Quiet[NIntegrate[p2[mu], {mu, -o, ©}]1]1);
expec = Quiet [NIntegrate[mucp2[mu], {mu, -o, =}]];
stdev =

(Quiet[NIntegrate[ (mu - expec)®cp2[mu], {mu, -, =}]] )”2;

ugamma = stdev;

Print["ugamma = ", ugamma]
Print["uCauchy = ", uCauchy]
Print["uCsS = ", ucCs]
ucs = 0.0012686

uCauchy = ©.531866
ugamma = ©.0228108

Fig. 5. Example 4.3 in [3] using inverse gamma prior

However, the inverse gamma prior gives a margi-
nal posterior for the measurand equal to a scaled
and shifted z-distribution, whose variance can be
2b+(n-1)s’
n(n+2a-3)
value of the standard deviation will be equal to
0.0228112, which practically coincides with the va-
lue obtained in Fig. 5.

From this formula, we see that the inverse
gamma prior can again be used if there is only one
observation, but in that case, the shape parameter a
has to be greater than one.

calculated as . In this case, the calculated

5. Proposals — 4

Reference [6] seems to be the most recent
contributor to this discussion. It proposes using a scaled
inverse chi-square distribution as an informative prior:

1 1+v/2 GZV
p(u,U)m(—j exp| ——— |,
v 2v
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where of is the prior variance and v is the associa-
ted number of degrees of freedom. It is clear that
this distribution describes the same data structure
as the inverse gamma does, but with a different
parameterization, the relation between the two

b
parameters being v=2a and Gg =— (Fig. 6).
a

. b
X = {0.9551, ©.9537}; nu =2a; s62=—;
a
o . s02 nu
po[mu_,v_] := yienu/z [- 2v ]
1 S +n (mu - mean)?
1[mu_, v_] := — Exp[-T]
plmu_, v_] :=p@[mu, v] «1[mu, v]

p2[mu_] := NIntegrate[pl[mu, v], {v, @, «}]
¢ = (Quiet[NIntegrate[p2[mu], {mu, -o, ©}1]);
expec = Quiet[NIntegrate[mucp2[mu], {mu, -, ©}]];
stdev =
(Quiet [NIntegrate[ (mu - expec)? c p2[mu], {mu, -, =}]]) 1z,
Print["ugamma = ", ugamma]
Print["uchi2 = ", stdev]
uchi2 = 0.0228108

ugamma = 0.0228108

Fig. 6. Example 4.3 in [3] using scaled inverse chi-square
distribution

Therefore, mathematically, it does not matter
whether one uses the inverse y prior or the inverse
x2 prior. However, the proposal by Carobbi is more
intuitive, because as Gelman et. al. point out in
their famous book [7], the scaled inverse 2 can be
thought of as providing the information equivalent
to v observations with average squared deviation o,.

These two parameters may be available from prior
experiments.

6. Conclusion

1) The Cox-Shirono approach causes compara-
tively very small uncertainties. This appears to be
the result of a strongly informative prior. Perhaps
another form of the function p(u,v), which is
supported on the interval v, <v<v might yield
results that are more reasonable.

2) This comment elicits a query: would there be
a way of quantifying the “informativeness” of a prior?

3) For generality, we wrote the prior as p(u,v),
even though in none of the proposals it depends on
the unknown mean of a Gaussian distribution, .
That is to say, we have assumed that there is no prior
information on the value of the measurand. Evidently,
this assumption simplifies matters, but it is not very
reasonable. A better approach is the one used by
Wiibbeler [5], who proposes a NIG prior.

4) If one decides to keep with the assumption
of constant u, the inverse y and 2 priors produce
a simple algebraic formula for the standard uncer-
tainty, usable by all practitioners. However, the latter
prior may be preferred because its parameters have
an intuitive interpretation.

5) In simple cases, the Mathematica software
allows direct numerical exploration of marginal
posteriors, such as computing credible intervals,
without the need to use MCMC or other alternatives.

max 2

AHaJTi3 Ta NOpPiBHAHHA DBal€CiBCbKMX MeTOIIB 1JIsl OIIHKHU
HEBU3HAYEHOCTI THIY A 3 momnepeaHiMi 3HAHHSAMHU

l. lipa
lMancbkuli kamonuuybkul yHieepcumem Yuni, Vicufia Mackenna 1460, Canmsbsizo, Yuni
ilira@ing.puc.cl

AHoTaris

SIKII0 MOXHa MPUIYCTUTH, IO PSIi CIIOCTEPEXKEHb 3a TMEBHOIO BEJIMUMHOIO € HE3aJeXKHUM, Y3SITUM i3 PO3IMOMIiNY
laycca, To moctymumit Jomatok 1 GUM pekomeHaye, 006 CTaHIZApTHY HEBU3HAYEHICTh, TOB’sSI3aHY 3 IIi€l0 BEJIUIMHOIO,
OyJ10 OTpMMaHO 3 (POPMYJIH, sKa 3aCTOCOBYETHCS A0 OLIBII HiXX TPbOX CIlOocTepekeHb. Ha mpaxkTuii e oOMeXeHHsI Moxke
MPU3BOAUTH 10 3HAYHUX BUTPAT Ha MPOBEICHHS JOAATKOBMX BMMiptoBaHb. OmHAaK HaBeleHa (hopMysa irHOpye Oyab-sKi
MornepeaHi 3HaHHs MPO BUMIpIOBaHY BeJMYUHY. HellogaBHO 3’SIBUJIMCS Pi3HI CTaTTi, Y SKUX IPOIOHYETHCS 3aCTOCYBAaHHS
baifeciBcbkrX METOMIB ISl MOMOJAHHS 1IbOro oOMexeHHs. JlesKi 3 LMX METOMAIB, IS SIKUX BUMAra€ThCsl MOMNepeaHe 3HAHHS
BEJIMUMHU, OOTOBOPIOIOTLCS B 1ill cTaTTi. Y Tmpoleci gocmimkeHHs 3’scyBanocsi, mo miaxin Kokca-IlipoHo oOGyMoBioe
MOPIBHSAHO NOyXe HeBeJIUKi HeBM3HaudeHocTi. Lleit pesyabrar 3maeTbes Ayke iH(GOPMATUBHUM amnpiopHUM. MOXKIUBO,
iHma Qopma (yHKIIi, 1110 MiATPUMYETHCS Ha BiANOBIAHOMY iHTEpBasli, MOXE HaJaTU OuUIbII MPUUHATHI pe3yabratu. s
3arajJibHOCTI arpiopHe OyJIO 3amucaHO 3ajJleXKHUM Bill HEBiIOMOTo cepeaHboro posmnoainy Iaycca, xoua i B XKOIHIi i3
MPOIO3ULii BiH Bill. HLOTO HE 3aJeXUThb. TOOTO Oys0 3pOOJEHO MPUMYLIEHHS, 1110 HEMA€E a0COIIOTHO HiSIKOI MOMepeaHbOl
iH(opMallii po 3HAaYeHHsI BUMIpIOBaHOI BeanuuHU. Kpalium migxomoMm € Toii, 110 BUKOPUCTOBYBaB BioOOesnep, skuii
3aIpOTIOHYBAaB aIpiopHe K HOPMaJIbHUII OOCpHEHUI raMMma-pos3nonii. s MeBHUX YyMOB OTPUMAaHO TPOCTY airedpaiaHy
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(opmyity OIiHIOBaHHSI CTaHAAPTHOI HEBM3HAYEHOCTI, SIKYy MOXHA BMKOPMCTOBYBATU MJIsT BCiX mpakTuK. [lepeBary moxxHa
BiIIATM OCTAaHHBOMY ampiOPHOMY, OCKIJIBKM MOro mnapameTpyd MaloTh iHTYiTUBHO 3po3yMily iHTepmperaiiito. [TokasaHo,
10 B MPOCTUX BUIMAAKax MporpaMmHe 3abe3neueHHss Mathematica mo3Bosisie TpsiMe YUCIOBE MOCIIIKEHHS TPAaHUYHUX
arnocTepiopHUX HMOBIpHOCTEI, HANpUKad, OOYMCIEHHS MOBipYMX iHTEpBaJiB, He MOTPeOYIOUM BUKOpUCTaHHS MOHTe-
Kapno MapKoBCbKMX JIAHLIIOTIB UM iHIIMX aJIbTEPHATUBHUX METOIIB.

KmouoBi cioBa: baiieciBcbki MeTOAM; OLiHKA HEBUM3HAYEHOCTI TUITY A; morepeaHi 3HaHHS.
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