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a. THE PROBLEM 

Now there is a great interest in the field of information technologies cause development a 
quantum computer that make direct use of quantum-mechanical phenomena, such as 
superposition and entanglement, to perform operations on data. Qubit - is a unit of quantum 
information—the quantum analogue of the classical bit. As a bit, a qubit admits two of its own 
state, but it can be in superposition. Following the development of a quantum computer will 
need to establish a standard unit of quantum information. The search for a candidate for the 
role of the qubit (and, stable) can give perspectives to the development of quantum 
metrology. 

The development of nanoelectronics and spintronics[1–3] during the last years has attracted 
considerable attention to novel types of heterostructures where the evolution of charge and 
spin degrees of freedom for the carriers have more favorable characteristics for possible 
device applications than in conventional semiconductors. A promising candidate has been 
recently discovered in the field of new materials called topological insulators (TI). In these 
materials the bulk material is insulating but the edge states having the energies within the 
bulk gap are of helical nature and are protected from the backscattering by the time reversal 
symmetry, creating efficient channels of spin and charge transport.[4, 5] 

b. INTRODUCTION AND RECENT RESEARCH AND PUBLICATION 

One of the first examples of TI-based structures were the HgTe/CdTe 2D quantum wells[5] 
where the tuning of the well width may create the phase where topologically protected edge 
states exist. The applications of TI in nanoelectronic devices require the fabrication of 
localized small-to-medium size object like quantum dots (QD). Several models of QD 
formation at the edge of TI where the symmetry protected state exist have been proposed 
during the last years.[6, 7] Most of them relevant to 1D QD on the edge of 2D TI deal with 
simplified assumptions of non-transparent magnetic barriers which are required to confine 
the electrons with massless Dirac (or Weyl) spectrum.[4] Under such assumptions the 
spectrum of discrete energy levels inside QD forms a set of equidistant levels located in two 
ladders above and below the Dirac point of TI where two linear dispersion branches cross.[6] 
For each level the corresponding eigenstate is a two-component spinor with certain spin 
polarization, which makes this system a promising candidate for studying there a driven 
dynamics excited by external electric field tuned to match the interlevel resonance splitting. 

c. WAYS TO SOLVE PROBLEM 

Requirements for performing a volumetric calculations and upgrade the cryptographic 
mechanisms causing the need for the creation of quantum computers. Scientists are 
engaged in the topic since the 80s of the 20th century. Need to get a heterostructure, 
providing a stable living condition at adequate temperatures. To this end, research is needed 
and new types of materials called topological insulators. Studies of their characteristics can 
give a significant contribution to the development of information technologies and quantum 
metrology, respectively. 

d. WORK PURPOSES 

Here we derive a model of a 1D-quantum dot formed at the edge of 2D TI based on the 
HgTe/CdTe quantum well bounded by magnetic barriers on both ends of the QD, which are 
described by a realistic model of finite barrier height. We discuss various mechanisms 
leading to the barrier formation, including the exchange interaction and Zeeman term. In 
particular, the two-level dot representing a model for the qubit is studied, and its Rabi 
frequency is found. The qubit operating time defined by the Rabi frequency is compared with 
relaxation times created by several mechanisms that are briefly discussed. 

 



FIG. 1. (Color online) Schematic view 
of a 1D-quantum dot with length L 
formed at the edge of 2D topological 
insulator in HgTe/CdTe quantum well 
by two magnetic barriers (pink) with 
magnetization amplitudes M1 and M2 
and polarization angles in the xy-
plane

 

 

e. RESEARCH 

We firstly describe an unperturbed Hamiltonian HQD for the 1D electron in a quantum dot 
(QD) confining the edge states in 2D HgTe/CdTe topological insulator (TI). The 3D layout of 
our structure is shown schematically in Fig.1. The HgTe 
quantum well in the center (lightcolored) region is 
formed by two neighboring CdTe layers, and the edge 
of the structure where the localized and topologically 
protected states are formed is described by the line x = 
0. The edge states are localized transversally to the 
edge along the x-direction, decaying into the bulk 
volume of the sample, and they are freely propagating 
parallel to the edge along the y-direction. Such states, 

as it has been shown previously,[4], can be described 
by the effective Weyl Hamiltonian  

 (1) 

Here the parameter A is determined by the 
HgTe/CdTe quantum well geometry where the 
twodimensional electron gas in confined, and for our 
model we take the value A = 0.36 eV · nm and 
consider the band gap in HgTe/CdTe to be around 40 
meV which corresponds to the quantum well width in the range of 7 . . . 8 nm.[4] In order to 
confine the states along the TI edge in the y-direction 
on our Fig.1, one needs to insert a mass term into the 
Hamiltonian, at least in the barrier area bounding the 
1D region of length L at the edge of TI where the 1D 
quantum dot can be formed. We take two mesoscopic 
barriers separated by the distance L, as it is shown in 
Fig.1. Each of these barriers may be viewed as a 
mesoscopic magnet having a specific magnetization 
of amplitude M1,2 and orientation Θ1,2 in the xy-plane. 
By generalizing the idea of non-transparent magnetic 
barriers,[6] we consider the model of barriers with 
finite transparency reflected in their finite height in 
units of energy M1,2, leading to the Hamiltonian of the 
form: 

 (2) 

Here the first term  is the effective Weyl 

Hamiltonian (1) for massless edge states propagating 
on the boundaries of the HgTe/CdTe TI. The second 
and third term in (2) describe the magnetic barriers 
located along the TI edge at y = 0 and y = L forming a 
confining QD potential, as it is shown schematically in 
Fig.1. 

In our model where the Hamiltonian (2) describes the 
barriers with finite transparency the spectrum cannot be 
found analytically, and has to be obtained from a 
transcendental equation which can be derived from the continuity of wavefunction at the 
boundaries between the QD and the corresponding barrier. After solving it numerically we 
obtain a non-equidistant spectrum with non-uniform level spacing E. The spectrum and the 

FIG. 2. (Color online) (a) Energy 
level dependence on the QD size 
L, (b) Dependence of the energy 
levels on the magnetization 
energy M. The number of levels is 
always even. 



associated properties of the eigenfunctions, including the spin polarization, strongly depend 
both on the QD size L and on the relative orientation and magnitude of the barrier 
magnetizations defined by the parameters M1,2 and Θ1,2, respectively. Below we will present 
several typical examples. 

Let us first consider the case of parallel magnetizations Θ1=Θ2=0, for the magnetization 
energies of both barriers M1 = M2 = 20 meV which is equal to the one half of the band gap in 
HgTe/CdTe quantum well. The first plot to be shown is the energy level dependence on the 
QD size L shown in Fig.2(a). On can see that the number of levels in the QD grows with the 
growing QD size L, and the interlevel distance decreases in general accordance with the 
expression for the non-transparent barriers. It should be specially noted that for the 
sufficiently narrow QD when L ≤ 70 nm there are only two levels available which turns the 
QD into an effective twolevel system suitable for the qubit applications. For low 
magnetization energies M1,2 ≤ 50 meV and for fixed L = 30 nm there are only two levels 
available inside QD, which again is a sign of a stable two-level system suitable for qubit 
applications. It turns out from the specific form of the wavefunction that the z component of 
the spin density is always zero. In Fig.3(a),(b) we show the examples of level structure (top) 
and two-dimensional spin density vector field (Sx(y), Sy(y)) inside the QD and in the 
neighboring barrier regions (bottom). The results in Fig.3(a) are shown for the narrow QD 
with L = 30 nm where only two levels are available, and in Fig.3(b) a wider QD with L = 110 
nm is considered where four levels are formed. It can be seen that different levels have 
different spin textures, which should be taken into account during the Fermi level variations 
leaving certain level being filled. 

 

One of possible applications of the tunable QD described 
by our model can be the scheme for the realization of 
qubit. It is of interest to find out whether the proposed 
QD model for sufficiently narrow length L ≤ 40 nm where 
only two levels are available for the confined electrons 
may actually work as a potential qubit. The first step, 
according to the Di Vincenzo criteria for quantum 
computation schemes [8] is an estimate on how fast the 
qubit may operate under the control gate pulses. We 
thus proceed with a simple quantum mechanical 
calculation of the two-level population swap under the 
monochromatic electric field on the frequency equal to 
the level splitting, and extract the resulting Rabi 
frequency both analytically and numerically. We consider 
the perturbation for the initial Hamiltonian (3) as a scalar 
potential V (y, t), in the form of spatially uniform electric 
field E0 created by electrostatic gates. The field is 
harmonic with frequency  matching the 
level splitting: 

 (3) 

The transition between the initial states on level E1 to the 
upper level E2 is characterized by the Rabi frequency 

 where T12 is the time period during which 
the level E1 population described by decreases from 1 to 
0, and the upper levels population rises from 0 to 1. For 
two-level system in the rotating wave approximation 
(RWA) the Rabi frequency can be found analytically. We 
see that the RWA approximation is in a good agreement 
with numerical solution. For the narrow two-level QD with 
L = 30 nm the level spacing E2 −E1 = 23 meV which 
corresponds to the driving frequency ω0 = 3.5·1013 s−1. 

FIG. 3. Level structure (top) 
and twodimensional spin 
density vector field (Sx(y),Sy(y)) 
inside the QD and in the 
neighboring barrier regions 
(bottom) for (a) the QD with L 
= 30 nm and (b) the QD with L 
= 110 nm. 



The maximum achievable Rabi frequency, as it follows from the computational results, can 
reach as much as 1011 . . . 1012 s−1 which indicates an acceptable range of qubit operation 
time top ≈ 10−11 s. Taking into account our results on the qubit operation time top ≈ 10−11 s 
and the estimates of the relaxation times discussed above, we may conclude that our two-
level QD when being viewed as a qubit can handle up to 105 . . . 108 operations, which is an 
acceptable value for further studies of quantum computation schemes with this proposal. It 
should be noted, however, that the experiments on magnetoconductivity in HgTe quantum 
wells show the relaxation times which are of the order of 10−10 sec. [9] These rather short 
relaxation times are applicable to the 2D electron gas inside the QW, i.e. for the bulk states 
rather than for the edge states which are considered here. One could say with certainty that 
any possible qubit applications of QD formed at the edge of TI in HgTe quantum well require 
further experimental studies of relaxation times for these edge states. 

f. CONCLUSIONS 

We have studied the quantum states, their spin density patterns, frequency dependence of 
the optical absorption coefficient, and two-level driven dynamics for the electrons in a 
quantum dot formed at the edge of two-dimensional HgTe/CdTe topological insulator 
representing a new class of materials with Weyl massless energy spectra, where the motion 
of carriers is less sensitive to disorder and impurity potentials. The predicted structure of 
absorption peaks can be served as a spectroscopic tool for the experimental observation of 
QD formation where discrete energy levels arise in the band gap of the host material. The 
dynamical properties of twolevel dot driven by monocrhomatic electric field indicate the 
possibility of a fast level switch operation suitable for further qubit applications as a new 
example of two-level system. The predicted properties are interest for future investigation in 
both fundamental and applied properties of QD formed in topological insulators as future 
elements of spintronics and nanoelectronics. For metrology is now ongoing studies are of 
great importance. Since most modern measuring instruments are computerized, the 
introduction of quantum computing would require the development of fundamentally new 
programming language for the new architecture of computers. There will be a question of the 
development of evaluation software protection algorithms related to metrological 
characteristics of measuring instruments. 
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