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Abstract

It is shown that there is a medium in a measuring channel between the object and the measuring device, which in
practice can be nonlinear and inertial. An example of such a medium is a pipe filled with gas or a liquid with air bubbles
inside. It is noted that the characteristics of the channel output signals can differ significantly from the characteristics of
the input signals. A method for solving the inverse measurement problem based on using the Hammerstein model, which
consists of two consecutive virtual blocks, is proposed. The order of solving the inverse measurement problem is established:
first the problem is solved for a linear inertial block and then for a nonlinear non-inertial one. It is found that the accuracy
of input signals restoration depends essentially on matching the pass band of the inertial block with the width of the signal
spectrum at the output of the nonlinear inertial block. The requirements are developed to input signals, the measurement
function, the bandwidth of the channel, the noise level in it, the accuracy of the output signal measurement, under which

the necessary quality of the metrological support is achieved for the inverse measurement problem.
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Introduction

Each measurement system, measuring channel
or sensor contains a measuring medium between the
measurement object and the measuring transducer and
also a signal processing device. This medium is called
a measuring line (ML). It can be long as, for example,
ML between the technical object and the pressure sen-
sor or an area essential for the radio waves propagation
in telemetry and radio detection and ranging, or very
short, for example, in microaccelerometers, microgyro-
scopes, etc. In measurement systems, pipes filled with
liquid or gas can be used to transfer pressure from a
technical object to a sensor. During maintenance of
a measuring channel (MC) air can penetrate into the
liquid and then the channel turns into a nonlinear
inertial one, that is, it becomes a nonlinear system with
memory [1]. These MCs are widely used in practice,
for example, in remote sensing systems [2], active safe-
ty systems of cars, computer vision systems, devices for
estimation of camera position and orientation that uses
information from inertial sensors [3]. The input action
(e. g., pressure) characteristics measured at the sensor
output can differ significantly from the actual ones,
that is, measurements in some cases are not reliable.
Hence, the task of determining the characteristics of
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action (signal) at the input of the ML is an important
inverse measurement problem.

Analysis of recent research and publications

For accurate measurements with little uncertainty,
it is necessary to have adequate mathematical models
of MC and, if possible, a complete information about
input random processes that are measured. The gene-
ral structure of such models is given, for example, in
[4, 5]. The inverse problem is solved exactly if the
mathematical model of a linear inertial MC in the
form of a convolution integral is completely known
[6, 7]. In real conditions, noises and errors of the out-
put signal measurement are present in MC. This led
to the fact that only approximate methods of inverse
problems solving can be used in practice. In [8], the
measured output signal (realization of a random pro-
cess) is compared in a functional space with a theo-
retical unknown output signal, which is represented
as a Karhunen—Loéve series. The difference between
them is minimized and thus unknown coefficients of
the series are obtained, that is, the restoration of the
signal to the MC input is carried out. The general
approach to solving inverse measurement problem for a
nonlinear inertial channel is given in [9, 10]. However,
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up to now, the requirements for metrological support
of inverse measurement problem in nonlinear inertial
MCs are not outlined.

The purpose of the article is development of pro-
posals for metrological support of inverse measurement
problems in nonlinear inertial measuring channels and
evaluation of conditions.

Modern approaches to the analysis of nonlinear
inertial measuring channels

In general case, the nonlinear inertial MCs ana-
lysis is accompanied by considerable difficulties. Many
researchers try to linearize the channel measurement
function or eliminate the conditions for appearance of
its nonlinearity. The most universal method for mo-
deling such channels is based on the Volterra’s series
model [11], which has been proposed long ago, but so
far it is not widely used in practice due to complexity
and cumbersomeness of the mathematical apparatus,
although it can be applied even in the presence of
noise and non-stationary input signals in MCs [12].
Now, the most suitable models of MC are block-ori-
ented models [13], in which the physical properties
of nonlinearity and inertiality are divided into diffe-
rent blocks. These models include, in particular, the
Hammerstein model [14], consisting of sequentially
connected nonlinear non-inertial and linear inertial
blocks. Such a model has created possibilities for an
approximate solution of inverse measurement problem
in a nonlinear inertial MC.

Physical bases for solving the inverse measurement
problem

In the Hammerstein model (Fig. 1), an input signal
(for example, pressure) p(l‘ ) passes sequentially through
two virtual blocks and is measured at the output of the
linear inertial block. The measured output signal ¥,,(?)
is compared with unknown theoretical signal y(t ) This
signal is connected with the signal by the convolution
equation, which is typical for linear inertial systems. In
accordance with the method presented in [8], the in-
verse problem is solved and the signal X(f ) is evalua-
ted. Thus, we have a nonlinear non-inertial block with
a known signal at its output. For receiving an input
signal p(t) it is necessary to have information about

e measuring channel

the measurement function of the nonlinear block, for
example, to use the test input signals and to solve the
problem of the nonlinear model identification. In the
article, the measurement function of this block is as-
sumed to be given as a polynomial (1)

x()=a,+ap(t)+a,p’(t)+...+a,_p"" (¢). (1)
where a,, i=1,..,m — the dimensional coefficients
of the measurement function which are known in this
article.

Let’s expand the already known function X (f ),
as well as the unknown realization p(l ) of the input
random signal in the Karhunen-Lo¢ve series

n-1
x()= X v, (1), )

m-1
p(t)= 2 Bew (1), 3)

where W;(?), W, (f) — chosen by a researcher the
same orthogonal functions of time, y, — known
coefficients, and , — unknown random coefficients.

The number of coefficients y. and (3, depends on
the shape of functions X\7), P ?) and should be the
same, that is, 72 = 1. Let’s substitute the relations
(2) and (3) into formula (1) and, in particular case,
at 7 =72 one can obtain

ZV"’ (1)=a,+a ZB\V (1)+a, (ZBw (). @)

To simplify the expression (4), its integration on the
interval of observation [O,T ] is carried out and
the orthogonality of functions Vi (t) and VY, (t) is
taken into account. The left-hand side of equation (4)
is completely known. Then the problem of determining
the coefficients (3, is reduced to minimizing the objec-
tive function of many variables, that is, the difference
between the left and right sides of the equation (4).
Minimization is carried out by using the algorithm of
global random search (genetic algorithm). As a result,
all coefficients (4) and, therefore, the realization of
random input signal (3) are determined.

From the physical point of view, there are limit-
ations on the solution of the inverse measurement
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problem. They are caused by relation between the
spectrum width Afx of the virtual signal x(t) and
the bandwidth of the linear inertial block Af . If
Af, > Af', then there is a loss of measurement in-
formation, which, of course, increases the errors of
the input signal restoration. The spectrum width AfX
depends on the shape of realization p(Z), the noise
power and degree of the polynomial (1). To evaluate
the influence of various factors on the results of the
inverse problem solution, let’s carry out the mathe-
matical modeling.

Results of the mathematical modeling

Let’s consider several variants of an input signal:
a) a harmonic signal; b) superposition of several har-
monic signals; c¢) the above signals together with the
white Gaussian noise of different powers. The time
constants of the linear inertial block T, = (Af )
were: 0.05 s, 0.1 s, 0.3 s, 0.5 s. Since the mathe-
matical model of MC is considered to be known,
it is always possible to calculate the output signal
of MC, which is an analog of the measured output
signal. After solving the inverse problem, the calcu-
lated input signal is compared with the realization
of random input signal that was given in modeling
as analog of the reference input signal, i. e., the to-
tality of reference quantity values. This provides the
basis for determining the errors of the input signal
restoration.

Fig. 2 shows the restoration result (dashed line)
of the input signal (pressure) as a sum of two har-
monics (solid line) for polinomial measurement
function of the nonlinear block (the degree of a

polynomial is equal to two) and the time constant
of the inertial block equal to 0.5 s. Despite the
large time constant of the inertial block, the re-
stored signal almost completely repeats the shape
of the input signal. This is due to the fact that the
main harmonics of the input signal after the non-
linear transformation were within the pass band of
the inertial block. On the contrary, if this obvious
condition for the experimental signal is violated
(Fig. 3), the quality of the input signal shape res-
toration deteriorates.

The results of mathematical modeling show:

— the relative errors of input signal restoration
usually increase (and not monotonically) when the du-
ration of the signal becomes larger; non-monotonic
change is due to the features of the genetic algorithm
work;

— input and output white noise are not restored
in inverse problem, but with an increase of the noise
power the restoration errors also rise;

— the greater measurement errors of the output
signal in MC, the more significant are the restoration
errors of the input signal;

— accuracy of the input signal restoration de-
pends essentially on the matching of the signal spec-
trum, which is transformed by a nonlinear block, and
the bandwidth of the inertial block;

— the measurement function of a nonlinear block
should be known, although it is difficult to implement
in practice; from the fundamental point of view, the
solution of the inverse problem is possible even with a
poorly known function but the solution is not always
reliable.
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Fig. 2. The result of the input signal restoration: solid line — the realization of random input signal and dashed line —
recovered signal
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Fig. 3. The result of the input signal restoration: solid line — the realization of experimental signal and dashed line —
recovered signal

The main proposals for metrological support of inverse
measurement problems

The article does not consider the usual tasks of
metrological support, which are common for metro-
logy. The main issue is the study of conditions under
which the solution of the inverse measurement prob-
lem satisfies the specified requirements for accuracy
of signal restoration in a nonlinear inertial channel.
The proposals for metrological support of the inverse
problem are based on the results of modeling but do
not contain specific figures, since these figures can
differ significantly for different measuring channels.
The main task is to create a mathematical model of
a nonlinear inertial channel taking into account the
virtuality of the two blocks that have been previously
described. For example, the measurement function of
non-linear block can be obtained if the pass band of
the linear inertial block is wide. The time constant of
this block can be measured if there are restrictions on
the nonlinearity of the non-inertial block. In general
case, it is possible to carry out theoretical studies to
create the desired model with subsequent its verifica-
tion for particular cases. A reliable model does not
guarantee reliable results if the accuracy of the output
signal measurement is insufficient or the noise level in

the measuring channel is high. No suggestions will help
solve the inverse problem of measurements if width
of the signal spectrum at the output of the nonline-
ar block is much more greater than the bandwidth of
the inertial block. In general, the proposals for metro-
logical support can be formulated only for a specific
nonlinear inertial channel which operates under certain
conditions.

Conclusions

The main conclusion of the paper is that the in-
verse measurement problem for a nonlinear inertial
channel can be solved in many particular cases. The
reliable solution of such a problem in general case
is impossible. Therefore, before solving the inverse
measurement problem, it is necessary to make sure that
the conditions for its solving exist. The application of
the proposed method for solving the inverse problem
is expediently if it is impossible to get rid of the non-
linearity of the channel. The main requirements that
provide the solution of the inverse measurement prob-
lem is the creation of a reliable mathematical model
of the nonlinear inertial channel, measuring the output
signal with a required accuracy and minimizing the
noise level in the channel.
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Mertpooriyde 3a0e3ne4yeHHs 00epHEHMX BHMipIOBAJIbHUX
3aJa4 B HEJMiHIMHUX IHEPUIMHUX CHUCTEMAaX

O.B. lMongapyc, A.C. bposko, €.0. lMNonsgkos, C.[. AHywkeBU4

Xapkiecbkull HaujoHanbHUl aemomobinbHO-00POXHIl yHisepcumem, 8yn. Spocnasa Mydpoeo, 25, 61002, Xapkis, YkpaiHa
poliarus.kharkov@ukr.net

AHoTania

TTokazaHo, 110 y BUMiplOBaJJbHOMY KaHaJli Mixk 00’€KTOM Ta BHUMIpIOBAJIbHUM IPUCTPOEM iCHYE CepeloBUILE, SKe Ha
MpaKTULI MOXe OyTH HeliHIMHMM Ta iHepuiiiHuM. [lpuKiagoM Takoro cepenoBuilia € TpyOa, 1110 3allOBHEHA MOBITPSIM abo
PIIMHOIO 3 MOBITPSIHUMU OyJibOalIKaMu BcepenrHi. Bin3HaueHo, 110 XapaKTepUCTUKU BUXiIHWUX CUTHAIIB KaHAJy MOXYTb
iCTOTHO BilPi3HATHCS Bill XapaKTEPUCTUK BXiTHMX. 3alpOTIOHOBAHO METOM PO3B’si3aHHSI 00EpHEHOI 3amadi BUMiploBaHb Ha
OCHOBI BUKOPHUCTaHHSI Monesii ['amMMepiuTeiiHa, 110 CKJIAZa€eThcsl 3 ABOX MOCIiIOBHUX BipTyaJlbHUX OJIOKiB. BcTaHOBIEHO
MOPSIIOK PO3B’si3aHHs 00epHEHOI 3a7adi BUMIpIOBaHb: CIOYATKY 3aava PO3B’SI3YEThCS IJIsl JTHIHHOTO iHEpLiiHOTO OJIOKY,
a TOTIM JUIsl HeJIiHIHOrOo HeiHepliitHoro. BusBIeHO, 1110 TOYHICTh BiIHOBJEHHS BXiZHMX CUTHAJIB iCTOTHO 3aJIeXKUTb Bif
Y3roJIxK€HHsI CMYTY MPOMYCKAHHS iHepLIiAHOTO OJIOKY 3 IIMPUHOIO CIIEKTPY CUTHay Ha BUXOJi HENTiHIMHOIO HeiHepLiiiHOTo
0J10KY.

Po3pobsieHo BUMOTHY 10 BXiAHUX CUTHAJIB, (DYHKILi1 MEpeTBOPEHHSI, CMYTU TPOITyCKaHHS KaHally, PiBHS IIIyMiB y HbOMY,
TOYHOCTI BUMIpIOBaHHSI BUXIIHOTO CUTHAJy, TIpU SIKMX 3a0e3MeuyeTbcsl HeoOXilHa SIKiCTb METPOJIOTIYHOro 3abe3redyeHHs
00epHEeHOI 3a7a4i BUMipIOBaHb.

KuouoBi ciioBa: BuMipioBajibHUI KaHajl, oOepHeHa 3ajaya BUMipIOBaHb, METPOJIOTiYHE 3a0e3MeYeHHs, HeJliHiliHa iHep-
LilfiHa cucrema.

MeTpogornyeckoe od0ecneyeHne 00paTHBIX
M3MEPUTEJIbHBIX 321a4 B HeJIMHEHHbIX MHEPIMOHHBIX
cucremMax

A.B. lMonspyc, A.C. bposko, E.A. lMNMongkos, C.O. AHyLwKeBWY

XapbKo8CKUll HayUOHarbHbIU asmomMobuibHO-00POXHbIU yHUsepcumem, yn. Spocnasa Mydpozo, 25, 61002, Xapbkos, YkpauHa
poliarus.kharkov@ukr.net

AHHOTAIMSA

TlokazaHo, 4TO B U3MEPUTEIBHOM KaHajle MeXI1y OOBEKTOM M U3MEPUTEIbHBIM YCTPOMCTBOM CYILECTBYET cpela, Ko-
Topasl Ha IpakTUKe MOXET 0aTh HEeJIMHEHHON M uHepluoHHOM. IIpuMepoM Takoil cpembl SIBIsIeTCSl TpyOa, 3amoJiHeHHast
BO3/IyXOM WJIM KUIAKOCTbIO C BO3IYIIHBIMU Iy3bIpbKaMu BHYTpU. OTMEUEHO, YTO XapaKTepUCTUKU BXOJHBIX CUTHAJIOB KaHajia
MOTYT CYIIECTBEHHO OTJIMYAThCSl OT XapaKTepUMCTUK BXONHbBIX. [IpemtoxkeH MeTon peleHMs: oOpaTHOM 3agauyud U3MEPEHUt
Ha OCHOBE MCIIOJIb30BaHUs Monaeau ['aMmepiiTeiitHa, KOTOpasi COCTOUT M3 JIBYX IOCAEA0BaTEIbHBIX BUPTYaJIbHBIX OJIOKOB.
YcTaHOBJIEH MOPSIIOK pelleHUus] OOpaTHOM 3a1auyv M3MEpeHUid: CHavyala 3aaaya peraercs isl JUHEHHOro MHEPLIMOHHOTO
0JIoKa, a TIOTOM JIJII HEJIMHEHHOro HemHeplroHHOro. OOHapyXeHO, YTO TOUYHOCTh BOCCTAHOBJICHUS BXOIHBIX CHUTHAJIOB
CYILLIECTBEHHO 3aBUCUT OT COIJIACOBAHMSI TOJIOCHI MPOMYCKAHHSI MHEPLUMOHHOIOo OJIoKa ¢ IIMPUHOIM CIEKTpa CUTHajla Ha
BBIXOJIe HEJIMHEMHOro MHEPLUMOHHOTO OJioKa.

Paspaboranbl TpeOOBaHUS K BXONHBIM CUTHalIaM, (yHKIMU MpeoOpa3oBaHus, MoJjoce MPOIMyCKaHHs KaHasla, YPOBHS
LIYMOB B HEM, TOYHOCTU M3MEPEHMSI BBIXOJHOTO CUTHAJIA, MPU KOTOPBIX JOCTUTAETCS HEOOXOAMMOE KaueCTBO METPOJIOTH-
Yyeckoro obecrieueHust 0OpaTHOM 3a1auv U3MEPEHUIA.

Kiouessie ciioBa: U3MEPUTEIIbHBIN KaHal, 06paTHaﬂ 3a7aua UBMEPEHUI, METPOJOTMYECKOE obecrieueHue, HeJIMHEHas
WHEPLMOHHAasA CUcCTeMa.
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