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Abstract

The article is devoted to the development of a new method for identifying the distribution laws in the evaluation of
the results of multiple measurements. Identification of the distribution laws is today an actual metrological task, because
the adopted limitations on the number of measurements and assumptions about the law of distribution of a random error
can introduce additional uncertainty into the evaluation of the result of measurements.

The use of well-known classical approaches to the identification of distribution laws involves a number of difficulties
that are related to the need to use the completeness of the considered set of models and the correctness of the application
of the corresponding statistical methods.

The information approach used in the evaluation of measurement uncertainty allows to express the relationship between
the error information characteristic — the entropy value of the error and the probabilistic error characteristic — the root-
mean-square deviation. Since the form of the distribution law is characterized by antikurtosis, the classification of distribution
laws was considered in the two-dimensional space of the entropy coefficient of the distribution law and its antikurtosis.
This approach formed the basis for the developed method of identifying distribution laws.

A model of the method for identifying distribution laws using the entropy coefficient of the distribution and antikurtosis
law is obtained. A comparative analysis of the laws of distribution of measurement errors using software is made, which
allows simulating the noise effect that adheres to the distributions in question.
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1. Introduction

Identification of the law of distribution of measure-
ment results by histogram is an important metrological
task, since the value of the root-mean-square deviation
of the measurement error depends on the law of dis-
tribution of the measurement results. On the basis of
the central limit theorem, it is considered that the law
of distributions of random errors is normal [1]. Thus,
the adopted limitations on the number of measurements
and assumptions about the distribution law of the ran-
dom error can introduce additional uncertainty into the
evaluation of the measurement result. This estimate is
difficult to formulate unambiguously because of the va-
riety of laws for the distribution of random variables [2].

2. Analysis of the literature data and statement of the
problem

Classical approaches to solving the problems of
identification of the distribution law are based on the
verification of statistical hypotheses using various crite-
ria of agreement, for example, Pearson, Kolmogorov-
Smirnov, and others [3]. This approach to the identifi-
cation of the distribution law consists in the sequential
implementation of the next two-stage procedure for each
type of parametric model from the set of laws under
consideration. At the first stage of the procedure, based
on the sample data, a model of a certain type of law is
constructed (from the set of models under considera-
tion) and the parameters of this model are estimated. At
the second stage, the degree of adequacy of the obtained
model to the experimental observations is estimated [4].

The second approach used to identify distribution
laws is to approximate the empirical law of distribution
by least-squares method. This approach for different
distribution laws differs in the efficiency of calculations
and in the complexity of comparison [5].

A grapho-analytical method for identifying distri-
bution laws is also known [6]. This method allows to
estimate the form of the distribution law for samples
of a small volume. The essence of the method is as
follows. On the grid, which axes are encoded in the
appropriate scale for a particular distribution law, ex-
perimental points are plotted. If these points “fall” on
one straight line, then their distribution is consistent
with this particular distribution law.

The use of classical approaches involves a number
of difficulties, which are connected with the need to use
the completeness of the considered set of models and
the correctness of the application of the corresponding
statistical methods [7]. The use of statistical methods,
the need for an informed choice of the criterion of
consent when solving the problem of identifying the
distribution requires a high qualification of the specialist.

At the same time, the information approach to the
estimation of measurement uncertainty allows to express
the relation between the error information characteris-
tic — the entropy value of the error and the probabilistic

error characteristic — the root-mean-square deviation.
Taking into account that the form of the distribution law
is characterized by antikurtosis coefficient, it is conven-
ient to classify the distribution laws in the two-dimen-
sional space of the entropy coefficient of the distribution
law and its antikurtosis coefficient [8], which can be
used to identify distribution laws.

The development of a method for identifying the
distribution laws when evaluating the measurement
results of which would characterized by simplicity,
convenience and visibility, but would not require high
qualification of a specialist and expensive software is
an actual scientific and applied problem.

3. Purpose and objectives of the study

The aim of this paper is to develop a method for iden-
tifying the law of distribution of a random variable based
on comparing empirical laws of distribution of a random
variable in a multidimensional vector space by determining
the proximity of distributions by correlation coefficients.

To achieve this goal, it is necessary to solve the
following tasks:

* to develop a model of a method for identifying
distribution laws using the entropy coefficient of the
distribution and antikurtosis law;

* to perform a comparative analysis of the laws of
distribution of measurement errors using software that
simulates a noise effect that adheres to the distributions
in question.

4. Construction of a mathematical model of the method
for identifying the laws of error distribution using the
entropy coefficient of the distribution and antikurtosis
coefficient law

The laws for the distribution of errors of individual
measuring instruments must be classified in order to
assess the accuracy of the measurement results.

From the position of the probability theory, the
form of the distribution law is numerically charac-
terized by its antikurtosis x ="/ \/HT , and from the
position of information theory — by the value of the
entropy coefficient k=A/o. For all possible distribution
laws x varies from 0 to 1, and k£ — from 0 to 2,076, so
the classification of the distribution laws is convenient-
ly considered in the (%, k) — plane in which each law
can be characterized by a certain point. For example,

for a uniform law, for which the fourth moment
4

W, =? and the antikurtosis

¢ N1 N5 5
\/MT& 3, 3 A3

such a point has the coordinates (x=0,74; k=1,73); for

a normal law, for which the fourth moment K, = 3c*
and the antikurtosis,

% = ~0,74,
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the point has coordinates (x=0,58; k=2,07).

To estimate the accuracy of the classification of
the laws of distribution of a random variable by clas-
sical and proposed identification methods, 40 series of
experiments were carried out for 100 test samples of a
random variable distributed over the logistic and gamma
distributions. To calculate the entropy coefficient and
the correlation coefficients from the final sample, the
probability density function of the random variable was
evaluated using the corresponding histogram at 12 inter-
vals of the grouping. An even number of intervals is cho-
sen to smooth the peaks of the histogram centers and
complicate in this experiment the problem of classifying
the distribution laws of random variables solved by the
method with the use of correlation coefficients on the
set of logistic, triangular, normal and other distributions.

We will classify some laws of distribution of a random
variable from the experimental data of the model sample
and calculate the distances between the mappings of the
distribution laws in the (%, k)-plane. To calculate the prob-
abilistic and information characteristics of the distribution
laws from the experimental data of simulated samples with
certain probability distribution laws, we use the program,
the algorithm of which is shown in Fig. 1 (Annex 1).

Comparative analysis and identification of the laws
of distribution of measurement errors was carried out
by means of Python. Today Python is the ideal lan-
guage for quickly writing various applications running
on most common platforms [9]. Python is a freely
available software product, which makes it possible to
widely use the results of development.

The results of calculating the probability and in-
formation characteristics of the distribution laws are
summarized in Table 1. The histograms of the generat-
ed samples of random variables with the corresponding
distribution laws are shown in Fig. 2.

Calculation of distances between the laws of pro-
bability distribution in the (x, k)-plane. The result of
the analysis is shown in Fig. 3. The graph below shows
the division of the most common laws of distribution
of measurement errors into two groups. On the plane
in the lower left corner is the Pareto law, and in the
upper right — a group of laws that are close in infor-
mation indicators to Gaussian.

The results of the calculation of the probability and
information characteristics of the distribution laws from
the experimental data of the simulated samples (Tables
1, 2) show that the closest to the test sample 7 will be
the normal distribution law. This does not correspond
to the initial model of the test sample 7. The closest to
test sample 6 will be the gamma distribution law, which
corresponds to the initial model of the test sample 6.

The developed method for identifying the distribu-
tion law can be used in the control systems of param-
eters when selecting a data filtering algorithm [10, 11].

~ 0,58,

_| Loading the Python mterpreter.
Launching script to execute.

Initialization of constants and vanables.
Generating the list Z [[n] [m]], where n -
number of senes of samples; m = [ka, k] -
number of columns. N is the number of
samples in the senes.

3,579,
11,1315,
17

Generating an array a [N] of
random values distnibuted over
uniform law.

4,6,8,10,
12,14,16,

18 Subroutine: constructing and rendenng

histograms of the generated sample

L -{ random vanables; assessments

the entropy value of the error, A;
calculation of RMS for sample, o:
assessments of the entropy coefficient
of the current distnbution law, k:
assessments counterexact of the current
law distnibution, ka.

Note. Blocks 3 and 4 are repeated
for samples of random varnables,
distnbuted over a nomal,
logistic, tnangular, Pareto,
gamma, gamma test, logistic test
laws, respectively.

Convert a list Z into a two-
dimensional array Z [n] [m).

20

] Calculating the distance between points
with the coordinates (k; ka) of the array Z [n] [m).

21

Sorting of the nearest distances
between the points of the array Z [n] [m].

22

Design of the table and schedule

-1 distance between functions
distnibution in a 2-dimensional system
coordinates (k: ka).

Calculation of the noms of functions
from the list of vectors empinical density
functions distribution.

23

24

Calculation of numerators of coefficients
correlation.

25

Calculation of correlation coefficients.
Making the coefficient table
correlation.

26
( The end ) _ | Completion of the calculation.

Fig.1. Algorithm of the program for calculating the probability
and information characteristics of distribution laws from the
experimental data of simulated samples
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Uniform distribution: Normal distribution: Logistic distribution: Triangular distribution:
ka=0,704; k=1.682 ka=0,605; k=2,062 ka=0,508; k=2.09 ka=0,645: k=1,924

Pareto distribution: The distribution of gamma: test 1-The distribution of gamma:  test 2- Logistic distribution:
ka=0,208; k=1,151 ka=0,439; k=1,718 ka=0,478; k=1,776 ka=0,538; k=2,001

c) d)

Fig. 2. Histograms of the generated samples of random variables with different distribution laws, where ka is the antikurtosis;
k is the entropy coefficient of the distribution law

Table 1
Results of calculating the probability and information characteristics of distribution laws from the
experimental data of simulated samples with some probability distribution laws (Annex 1)

Mean s Entropy value of error, Entropy coefficient of Antikurtosis.
Error distribution law quare _ 1 uniform distribution 2
error, o A=t—e n=0 /\/E
> law, k=A/c
Uniform 0,30 0,50 0,74351312 1,68185207
Normal 1,04 2,13 0,60477625 2,06180561
Logistic 1,85 3,87 0,50800657 2,08984593
Triangular 0,22 0,41 0,64530733 1,92406677
Pareto 0,47 0,54 0,20830584 1,15149634
Gamma 1,35 2,31 0,43895244 1,71772379
Gamma (testl) 1,22 2,17 0,47783109 1,77634945
Logistic (test2) 1,70 3,40 0,5383763 2,00119226
Table 2
Results of calculating distances between the laws of probability distribution in the (%, k)-plane (Annex 1)
Error distribution law Identifier
Identifier Name further
0 Uniform 0 3 6 5 7 1 2 4
1 Normal 1 7 2 3 6 5 0 4
2 Logistic 2 7 1 3 6 5 0 4
3 Triangular 3 7 1 2 6 0 5 4
4 Pareto 4 5 6 0 3 7 2 1
5 Gamma 5 6 3 7 0 2 1 4
6 Gamma (test 1) 6 5 3 7 0 1 2 4
7 Logistic (test 2) 7 1 2 3 6 5 0 4
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Fig. 3. Distances between the laws of probability distribution in the (x, k)-plane (Annex 1)

5. Identification of distribution laws from experimental
data of simulated samples using the correlation coefficient

To determine the degree of independence or sim-
ilarity of one set of data with another, or one process
with another, a correlation analysis of variables is often
used, which gives additional information about their re-
lationship. There are several methods for estimating the
correlation dependence of quantitative indices [5], among
which the general linear correlation coefficient developed
by Karl Pierson, Francis Edgeworth and Raphael Weldon:

_covyy DX -X)Y-Y) O
Yooy S-xyY-vy

_ 1 N — 1 N
where X:N;Xﬁ Y:W;:Yi _

the average arithmetic values of the samples; N — the
number of sample values; 6,, 6, — standard deviations.

The linear correlation coefficient takes values in
the range [—1; +1]. The boundary values —1, +1 of the
linear correlation coefficient mean the total correlation,
and the value 0 means no correlation.

In this paper, we use the correlation coefficient to
estimate the proximity of the probability density func-
tions, and calculate for pairs of different probability
densities represented by histograms in a multidimen-
sional vector space, on the orthonormal basis of unit
sampling intervals:

ilil XiYi

Iy = » — -
\/Zi:l Xi2 VZi Yi2

When calculating the correlation coefficients
according to formula (2), we do not take into ac-
count the normalization of the distribution laws rep-
resented by histograms, since in this case this does
not affect the value of the correlation coefficients

(@)

Table 3
Coefficients of correlation of distribution laws from experimental data of simulated samples
Error distribution law Correlation coefficient
Identifier Name 0 1 2 3 4 5 6 7
0 Uniform 1 0,752 0,666 0,847 0,426 0,671 0,723 0,738
1 Normal 0,752 1 0,86 0,909 0,127 0,592 0,667 0,948
2 Logistic 0,666 0,86 1 0,687 0,027 0,29 0,379 0,969
3 Triangular 0,847 0,909 0,687 1 0,298 0,828 0,855 0,793
4 Pareto 0,426 0,127 0,027 0,298 1 0,594 0,658 0,082
5 Gamma 0,671 0,592 0,29 0,828 0,594 1 0,984 0,424
6 Gamma (test 1) | 0,723 0,667 0,379 0,855 0,658 0,984 1 0,515
7 Logistic (test 2) | 0,738 0,948 0,969 0,793 0,082 0,424 0,515 1
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and, consequently, the calculation by formula (1)
is simplified.

Based on the obtained matrix of values of corre-
lation coefficients, we carry out a classification eval-
uation of unknown distribution laws from the experi-
mental data of simulated samples, Table 3.

The results of calculating the correlation coeffi-
cients of the distribution laws from the experimental
data of the simulated samples, Table 4, show that the
closest to the test sample 7 will be the logistic distri-
bution law, which corresponds to the initial model of
the test sample 7. The closest to test sample 6 will be
the gamma distribution law, which corresponds to the
initial model of the test sample 6.

Conclusions

From the standpoint of information theory, the
accuracy of measurements is characterized by the value

of the entropy error of the measurement. Therefore,
if the error with an arbitrary probability distribution
law has the entropy H,, then it can be replaced by an
error with a uniform, in general, any other probability
distribution law and entropy H,.

Comparing the methods for identifying the laws
of distribution of a random variable: the first is based
on the probability and information characteristics of a
random variable in the (%, k)-plane, and the second
is based on comparing empirical laws of the distribu-
tion of a random variable in a multidimensional vector
space, determining the proximity of distributions by the
correlation coefficients and based on the calculations,
it can be stated that the latter method is more accurate.

By combining the method of identifying the distri-
bution law, based on the calculation of the correlation
coefficients and the method for estimating the entropy
interval of uncertainty, it is possible to more accurately
estimate the results of multiple measurements.

Annex 1

Program 1. Calculation of the probabilistic and information characteristics of distribution laws from the
experimental data of simulated samples with certain probability distribution laws.

import matplotlib.pyplot as plt
import numpy as np
import math

from itertools import product

yy=[l
def diagram(a, nr):
a.sort() # sort the list
n=len(a) # number of items in the list

m= int(9) # number of break intervals
d=(max(a)-min(a))/m # length of the intervals
x=[L;y=I]

avery = 0

for i in np.arange(0,m,1):

k=0
for j in a:
if min(a)+d*i <= j <= min(a)+d*(i+1):
k=k+1

yy.append(y) # list: consists of function vectors

from scipy.stats import uniform, norm, logistic, triang, pareto, gamma

#m= int(10+np.sqrt(n)) # (was) the number of intervals of the partition

x.append(min(a)+d*i) # Adding the boundaries of intervals to the list x

y.append(k)# adding frequencies to the interval in the list y

# an estimate of the entropy value of the error (23)
#delta=0.5*d*n*10**(-sum([w*np.logl0(w) for w in y if w!=0])/n) # formula (23)
# or formulas (21)+(15)

delta=0.5*np.exp(sum(|w*np.log(n/w)/n for w in y if w!=0]) + np.log(d))
# estimation of the entropy coefficient of the current distribution law
k=delta/np.std(a) # formula (16)

sigma = np.std(a) # calculation of the standard deviation of the sample
print(‘sigma = %.2f %sigma)

mud=sum([(w-np.mean(a))**4 for w in a])/n

# evaluation of the antikurtosis of the current distribution law
ka=(np.std(a))**2/np.sqrt(mu4)

# Drawing the histogram

plt.title("%s : ka = %s; k = %s"%(nr,str(round(ka,3)),str(round(k,3))))
plt.bar(x, y, d, align='edge', alpha=0.5, color='g')

return [ka, k]
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# list generation

n = 8 # rows (number of series of samples)
m = 2 # of columns [ka k]

Z = [[0] * m for i in range(n)]

N = 1000 # number of samples in the series
# inscription list

nr="Uniform distribution “
a=uniform.rvs(size=N)
plt.subplot(121)

Z[0] = diagram(a, nr)
plt.grid(True)

nr="Normal distribution”
b=norm.rvs(size=N)
plt.subplot(122)

Z[1] = diagram(b, nr)
plt.grid(True)

plt.show()

nr=""Logistic distribution”
c=logistic.rvs(size=N)
plt.subplot(121)

Z[2] = diagram(c, nr)
plt.grid(True)
nr="Triangular distribution”
cd = 0.158

d = triang.rvs(cd, size=N)
plt.subplot(122)

Z|[3] = diagram(d, nr)
plt.grid(True)

plt.show()

nr=" Pareto distribution “
e = pareto.rvs(4, size=N)
plt.subplot(121)

Z[4] = diagram(e, nr)
plt.grid(True)

nr= Gamma distribution”
cf = 1.99

f = gamma.rvs(cf, size=N)
plt.subplot(122)

Z[5] = diagram(f, nr)
plt.grid(True)

plt.show()

# test sample 1

nr=" test]-Gamma distribution
cf t =1.99

tl = gamma.rvs(cf t, size=200)
plt.subplot(121)

Z[6] = diagram(tl, nr)
plt.grid(True)

# test sample 2
nr="test2-Logistic distribution”
t2 = logistic.rvs(size=200)
plt.subplot(122)

Z|7] = diagram(t2, nr)
plt.grid(True)

plt.show()

plt.grid(True)

# converting the list to an array
Z = np.array(Z)

# Array Formatting

Z = Z.reshape((n, m))
print(“\n Z = %)

print(Z)

# calculating the distance between points

snr = [0 — uniform’, ‘1 — norm’, 2 — logistic’, ‘3 — triang’, ‘4 — pareto’, ‘5 — gamma’, ‘6 — testl’, 7 — test2’]
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dist_sq = np.sum((Z[:, np.newaxis,:] — Z[np.newaxis,:,:]) ** 2, axis = —1)
# sorting of the nearest distances between points
nearest = np.argsort(dist_sq, axis = 1)

print(“\n nearest = )

print(nearest)

# Draw lines between the nearest to points
K=1

nearest_partition = np.argpartition(dist_sq, K + 1, axis = 1)
#draw points
colors = np.random.rand(n) #n=8 — number of series of samples
area = 144 # yfdcrblre
plt.scatter(Z[:, 0], Z[:, 1], s=area, c=colors, alpha=0.5)
#Drawing text near points
for i in range(Z.shape[0]):

plt.text(Z[i, 0]-0.02, Z[i, 1]+0.05, snr[i])
#Drawing lines
for i in range(Z.shape[0]):

for j in nearest_partition[i, :K+1]:

plt.plot(*zip(Z[j], Z[i]), color=(0.1, 0.2, 0.5))

plt.plot(Z][:, 0], Z[:, 1], “bo”, markersize = 4)
plt.axis([0.1, 0.8, 1, 2.3])
plt.title(“Distance between functions in 2-D coordinate system”)
plt.xlabel(r’$ antikurtosis, \kappa$’)
plt.ylabel(r’$ entropy coefficient, k$’)
plt.show()
plt.grid(True)

Meton inenTudikanii 3aKOHIB PO3NOJALIY NPHU OIHII
pe3yJabTaTiB 0araTopa3oBUX BUMIipIOBaHb

O.A. NocixiH, O.K0. OninHuk, KO.K. TapaHeHko, O.C. YopHa
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AHoTanis

CTarTiO MPUCBSIYEHO PO3POOIIi HOBOrO METOMy ileHTH(iKallil 3aKOHIB PO3IOAiNY MPU OLHII pe3yabTaTiB Garatopa-
30BUX BuUMiptoBaHb. Ha cbhoromHi ineHTtudikallisi 3aKOHiB PO3IOALTY € aKTyaJbHUM METPOJIOTIYHUM 3aBIAHHSIM, OCKIJTbKHU
NPUIAHATI OOMEXEHHS 3a KiJIbKICTIO BUMIpIOBaHb i JOIYILIEHHSI PO 3aKOH PO3IOJAiJy BUIIAIKOBOI MOXUOKHM MOXYTh BHECTU
JIOIATKOBY HEBU3HAUYEHICTh B OILIiHIII PE3Yy/bTaTiB BUMipIOBaHb.

BukopucrtaHHs BiioMMX KJIaCUYHUX MiAXOMIB IIOAO iAeHTU(IKAaLIl 3aKOHIB pO3IOAiIY MOEIHAHO 3 PSIOM TPYIHOILIB,
SIKi TIOB’sI3aHi 3 HEOOXiIHICTIO BUKOPUCTAHHSI TTOBHOTHM PO3IJISSTHYTOI Oe3iui Mozmeeil Ta KOPEKTHOCTI 3aCTOCYBaHHS Bil-
MOBITHUX CTAaTUCTUYHUX METOIIB.

BukopucroByBaHuit y po6oTi iH(popMaLiifHUIA TTiAXiA IOI0 OLiHKM HEBU3HAYCHOCTI BUMIpIOBaHb JO3BOJISIE BU3HAYUTH -
csl 31 CTaBJIeHHSIM MixX iHQOpMalliiiHOIO XapaKTepUCTUKOIO MOXUOKM — €HTPOIiIMHUM 3HAUYEHHSIM MOXMOKMU Ta MMOBIpHICHOIO
XapaKTEePUCTUKOIO TIOXUOKN — CepeNHbOKBAAPATUIHNM BimxuineHHsM. [1o3ask dhopma 3aKOHY pO3MOAiTY XapaKTepU3yEThCS
KOHTpEeKCIeCcoM, Kacu(ikallilo 3aKOHIB pO3MO/iJly OyJ0 PO3MISIHYTO y IBOBUMIPHOMY MPOCTOPI €HTPOITiiiHOrO KoedilieHTa
3aKOHY PO3MOMIiIY Ta oro KOHTpeKcuecy. Takuii Mmimxim Jir B OCHOBY pO3pOOJIIOBAJIBHOTO METONMy ineHTH(iKallii 3aKOHIB
po3riofiny.

Y po6oTi oTpuMaHO MozeNb METOAy ineHTUdIKaLil 3aKOHIB PO3MOALTY i3 BUKOPUCTAHHSIM €HTPOITIMHOro Koedili-
€HTa 3aKOHY DO3IMOJily i KOHTpekcilecy. BUKOHAHO MOPiBHSUIBHUI aHasi3 3aKOHIB pO3MOAiNy MOXUOOK BUMIipIOBaHHS
i3 BUKOPUCTaHHSIM TIPOTPaMHOTO 3a0e3MeueHHsl, sIKe J03BOJIsSIE iMiTyBaTU BIUIMB LIYMY, 1110 MiIKOPSIETHCS PO3IISIHYTUM
posnoaiiam.

KunrouoBi cioBa: eHTpomisi, moxubKa, HEBU3HAUEHICTh, 3aKOH PO3MOily, ricTorpaMa.
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AHHOTAIMS

Cratbsl TIOCBSIIEHA pa3pabOTKe HOBOIO METOAa UAEHTU(DUKALIMU 3aKOHOB PACIIPENEICHMS IIPU OLEHKE Pe3yIbTaTOB
MHOTOKPATHBIX M3MepeHuil. MneHTuduKams 3aKOHOB pacIipele/ieHHsl SIBJISIETCSl CErOMHsT aKTyaJbHOM MeTpOJIOTrMYecKOi
3amaveii, MOCKOJbKY IPUHSIThIE OTPAHUYEHMS 10 KOJIMYECTBY M3MEPEHUI M IOIYLICHUSI O 3aKOHE PacIpeeeHus CaydaiiHoi
MOTPEITHOCTA MOTYT BHECTH IOIOJHUTEIBHYIO HEOIpPeIeIEHHOCTh B OLIEHKE Pe3yJbTaTOB M3MEPEHUIA.

Hcnonb3oBaHKe M3BECTHBIX KJIACCUYECKUX ITOIXOAOB M0 MACHTU(MUKALIMKM 3aKOHOB PacIpeaeeHus] CONPSIKEHO C Psi-
IIOM TPYIHOCTEH, KOTOPhIE CBSI3aHBI ¢ HEOOXOTMMOCTBIO MCITOIb30BAHUS TTOJTHOTHI PACCMATPUBAEMOTO MHOXKECTBA MOJEJei
U KOPPEKTHOCTU MPUMEHEHMSI COOTBETCTBYIOIIMX CTATUCTMUYECKMX METOMIOB.

Hcnonb3yeMblii B paboTe MHMOOPMALIMOHHBIN MOAXOMI K OLIEHKE HEOIPeAeJEHHOCTH M3MEPEHUIA TTO3BOJISIET BhIPA3UTh
OTHOILICHNE MeXIy MH(POPMAIIMOHHON XapaKTePUCTUKOW IMOrPEIIHOCTY — SHTPONMUMAHBIM 3HaYCHUEM ITOIPEIIHOCTH U Be-
POSITHOCTHOM XapaKTEPUCTUKON ITOrPEIIHOCTH — CPEeIHEKBAIPAaTUYHBIM OTKJIOHeHMeM. Tak Kak (popma 3aKOHa paciipe-
JIeJICHUST XapaKTepu3yeTcsl KOHTPIKCIECCOM, KiaaccuduKalus 3aKOHOB pachpesesieHus Oblla pacCMOTpeHa B JIBYMEPHOM
IMPOCTPAHCTBE SHTPOIMIHOTO KO3 PUIIMEHTA 3aKOHA pacIpeie/ieHUsT M eT0 KOHTpIKcIlecca. JIaHHBINM MTOAX0 JieT B OCHOBY
pa3pabaThiBAEMOI0 MeTO/Aa MACHTU(UKALMU 3aKOHOB paclpeaeeHMsI.

IonyyeHa mMomenb MeToAa MACHTU(UKALIMKM 3aKOHOB PaCIIpeaeeHs C CIIOIb30BaHUEM SHTPOIUIHOIO K0ahduineHTa
3aKOHa pacIpeleieHusT U KOHTpAIKcIlecca. BBITIOMHEH CpaBHUTENbHBIA aHaN3 3aKOHOB paclpelesieHUs ITOrPelrHOCTei
M3MEpPEHMsI C MCIOJIb30BAaHMEM IIPOrPAMMHOIO OOeCIeYeHusI, KOTOPOe IT03BOJIIET MMUTHPOBATh IIIyMOBOE BO3IEICTBHUE,
MMOAUMHSIIOIIEECS pacCMaTPUBAEMBbIM PACIIPEICICHUSIM.

Kitouessie ciioBa: QHTPOIIUA, MOrpeIrHOCTb, HEOMPEACTICHHOCTb, 3aKOH paCIIpeaCICHUA, rucTrorpaMmma.
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