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Abstract

Example 9.3.1.1 of JCGM-S1 “Mass calibration” is analyzed, which describes the comparison in air of reference and
calibrated weights having the same nominal mass. JCGM-S1 compares uncertainty evaluation procedures based on the GUM
uncertainty framework and the Monte Carlo method.

The article uses the procedure developed by the authors and consists in decomposing the measurement model into a
Taylor series of the second order taking into account the kurtoses of the distributions of input quantities. To facilitate the
calculations, the finite increment method is used. To find expanded uncertainty, the kurtosis method is used. Good agree-
ment between the results obtained by the proposed method and the result obtained by the Monte Carlo method is shown.
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Introduction

Weight calibration is carried out by comparing its
mass with a reference weight having the same mass
using balance working in the air. Measurement un-
certainty evaluating for this example is discussed in
regulatory document JCGM-S1, 9.3.1.1. [1].

In [1], the measurement uncertainty evaluation
using the methods of GUM [2] and Monte Carlo [3]
is performed. At this, a significant bias in the mea-
surement uncertainty evaluation obtained using GUM
is discovered.

To implement the Monte Carlo method, one can
apply, for example, the “Uncertainty machine” pro-
gram developed by NIST [4]. However, one of the
drawbacks of such programs is the lack of a total mea-
surement uncertainty budget. Elimination of the above
disadvantages is possible using the methods proposed
by the authors in [5—7].

The purpose of this article is to implement the
methods [5—7] for measurement uncertainty evalua-
tion during calibration of weights with verification of
their adequacy.

© HHILI «Incturyt Merposorii», 2020

1. Development of a measurement model

Mass of calibrated weight m,, with mass density
p,, is compared with a reference weight with mass den-
sity p, , having nominally the same mass using balance
working in air with mass density p . Since p, and p,
are generally different, buoyancy of air should be taken
into account. Therefore, based on the Archimedes law,
we can write the following formula [1]:

my, (1=p, /py) = (my +3m )1—p, /), (1)

where m, — actual mass of the reference weight;
Om,— actual mass of small weight with density p,,
added to equalize balance.

Usually the conventional mass of the calibra-
ted weight m,, . — mass of hypothetical weight with
density p, = 8000 kg/m’, which balances the cali-
brated weight in the air with density p = 1.2 kg/m’,
is determined. Therefore, taking into account
the notation of the conventional masses of re-
ference weights my ., Om,, model (1) takes the
form [1]:

R’
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(1-p,/py)
" 1=p,0/Py)

(1-p,/Ps)

=(mg, +0my,, .
(. + O, )(l—pao/pR)

(2)

Ultimately, for deviation dm of conventional mass
of calibrated weight from its nominal value m_

m

8m = mW,c _mnom’ (3)

the final model takes the form [1]:

(1_pa/pR)(l_pa0/pW)
R,c ~ Mhom* 4
' )(1_paO/pR)(1_pa/pW) " ( )

Insofar as the equation (4) is nonlinear, in
numerical value evaluation of the measurand and its
uncertainty it is necessary to consider higher terms
in the expansion (4) in the Taylor series of the
second order considering kurtoses of input quantity
distributions.

dm = (m, , +3m

2. Calculation of the numerical value of the measurand

In the first approximation, the calculation of
the numerical value of the measurand is carried out
according to the formula:

AP /P —Pus/Ps) (5,
=P /PP [Py) ™™

in which the values of input quantities are replaced by
their numerical values marked with hats.

For given in [1] estimates of the numerical values
of input quantities: m, = 100 g; SmR = 1.234mg;
p, = 1.2kg/m?, p,, =p, = 8000 kg/m*and m,_, =100g,
we obtain &m = 1.234 mg.

m = (i, +dmy )

Formula (2) gives an unbiased estimate of the
numerical value of the measurand only in the absence
of uncertainties of input quantities.

The bias A, of the numerical value of the
measurand can be estimated taking into account the
partial derivatives of the second order of the measu-
rand with respect to the corresponding input quanti-
ties c(x), [S]:

A, =5 Y e ), ©)

where u(x), i=1,2,...,N — standard uncertainties of
input quantities X, X,...,X,.

For equation (4) the calculation of the bias for
Sm is performed by the formula:

A, = —%[c(mR!C)zuz(WzM)+c(6mR’C)2u2 (Omy )+ o
+C(pa)2u2 (pa)+c(pR)Zuz(pR)+c(pW)2u2(pW)]'

The expressions for c¢(x), are given in Table 1.

Since the second-order partial derivatives
of the measurand with respect to all input
quantities turned out to be equal to zero, the
bias of the measurand numerical value will also
be zero.

3. Calculation of the standard uncertainty of the
measurand

In the first approximation, the calculation of the
standard uncertainty of the measurand is carried out
based on the equation:

u(&m) = \/Cz(mR,c)uz(mR,c) ¢ (Bmy, Ju* By )+ (pJu’ (p,) + ¢ (P )u’ (pr) +¢ (py )t (Py ) ®)

where u(x) and c¢(x) — the standard uncertainty

input quantity (sensitivity coefficient), respectively.

of the input quantity X, and the partial Expressions for c¢(x) and their values are given in
derivative of the measurand with respect to this Table 2.
Table 1
Second-order partial differential expressions
c(x)), Expressions for c(x,), Values c(x,),
c(mR,c)Z 0 0
c(dmy ), 0 0
c(pa)2 2(mR’C + SmR,C) (pW _paO) . (pR _pW)3 O mé/kg
(Pr=Pw) (Pw—P,)
(pw_p o) (p —_P o)
c(pg) 2(my  +0my ) a0 e 0m¢/k
o2 * * (pW _pa) (pR _pao)3 £
Pr=P)  (Pe—Puo)
c(Pw)a _2(mR,c +8mR,g) Pa —Py) 2Ps P 03 0m®kg
(pR - paO) (pW - pa)
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Table 2
Expressions for sensitivity coefficients
c(x,) Expressions for c(x;) Values c(x;)
(pR —p )(PW —p 0)
c(my ) a a
o (pR - puO)(pW - pu) I
c(SmR ) (ﬁR _ﬁa)(lsw _ﬁao) |
, (ﬁR _ﬁao)(ﬁw _ﬁa)
C(p ) (m +8m ) (pW_paO)(pR_pW) 0m3
a R,c R.c
(pR - pao)(pW P, )2
Py —Pu0)(Pu —Puo)
c(Pg) —(my , +8my ) S 0 m?
N : : (pW _pa)(pR _paO)2 m
(pR —P )(p 0o— P )
c(py,) (m, ,+0my ) asla “ 3
v e o P )Py P, om
For the above evaluations of input quantities, a1 LA ) 4
as well as for the standard uncertainty of the input Aw?) = 4;6 (%), [n(x) +2]-07(x) +
quantities specified in [1]: u(m, )=0.05 mg; u(dm, )= 9

=0.02 mg; u(p,)=0.05774keg/m’; u(p,)=>577.35kg/m’;
u(p,) =28.87kg/m’, we obtain u(dm)=0.05385mg.
Formula (6) provides an unbiased estimate of the
standard uncertainty of the measurand only in the
absence of uncertainties of the input quantities.
The bias of the variance of the measurand is
calculated by the formula [6]:

N i-1
+20 2 (g x ) (o u (x,),
i=2 j=1
where 1(x) — kurtosis of the distribution of the i-th input
quantity, which is taken from Table 3 [5], c(x,,,xj) —
a mixed second-order partial derivative of the measurand
with respect to the i-th and j-th input quantities, which
is estimated for known values of the input quantities.

The calculation the bias for u(dm) is made by the formula:

Alu® (dm)] = % {e(p, )’ (P )T N(P) +21+[c(pr),u’ (P )V IN(PR) + 21 +[c(py )’ (py )P [Py ) + 21} +

H[e(@my o ppJu(my Ju(p)T +[c(my .., Ju(my Ju(p )T +c(my . py Yu(my Ju(py )T +

HIe(®my ., By Ju(p )T +[c(@Bmy . p,Ju(Bmy Ju(p, )] +[c(Bmy . py u(Smy Julp, I +

(10

Hlelp,,pp)ulp,ulpy )]2 +[elp,»py up,u(py, )]2 +e(pgs Py ulpgIu(py, )]2 >

where c(xl.,xj) — second-order mixed partial derivatives
of the measurand with respect to the corresponding
input quantities; n(x) — kurtoses of input quantities.
Expressions for c(x[,x/.) and their values are given in
Table 4.

For the above input quantities estimates and
their standard uncertainties, as well as for kurtoses
corresponding to the distribution laws of input
quantities taken in [1] n(m,,)=n(dm, )=0;
n(p,) =n(px) =n(py) =-1.2,we obtain A(x?) =0.00272 mg>.

Table 3
Kurtosis values for various input quantities distributions
Distribution law n
Arcsine -1.5
Uniform -1.2
Triangular —0.6
Normal 0
Student’s with the number of degrees of freedom v 6/(v—4)
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Table 4
Expressions for mixed second-order partial derivatives
c(x,, xi) Expressions for c(x;,x;) Values c(x;,x;)
c(my .,p,) Py —Pu)Pr — pWZ 0 m¥kg
(pR — paO)(pW — pa)
(pR — pa)(paO — pa) 3
k
c(mR,c’pW) (pR _paO)(pW _pa)Z 0 m?/ g
(pW — paO)(pa — paO)
c(my .,Pg) 0 m’/k
P Py —P)Pr—Puo)’ mke
c(5m ,C’pa) (pW — pao)(pR — pW) R
! (Pr = Puo) Py —P.)’ 0 miike
Pz =P )P —P.)
c(dmy ..py) e = 3k
ety (pR _pao)(pW _pa)2 0 mke
(pW — paO)(pa — paO)
(Mg cPr) Py —PIPr —Puo)’ 0 m’kg
(P o1t Pxr _2pW)p +(pW _2pR)p o T PywPr
—(m, . +0m, )= - a B .
c(P.>Py) R, R, ©r —p)(Pr—po0) 1.56x10° m¥/kg
~ S (ﬁw — [3 0)2
c(p,, (Mg, +8my )—— = —— 1.56x10° m¥/k
(PusPi) B (B =Puo) Py =P, e
~ I (ﬁ _ﬁ o)2
, —(my  +0my, ) ——— 0 m%/k
“®w-Px) e 5. (P —P.) ke

The unbiased estimate of the combined standard
uncertainty calculated by the formula:

u, (dm) = \Ju* (dm) + A(?).

For the above values u(dm) and A(u?), we
obtain u(6m)=0.075 mg, which is very close to the
value calculated in [I] by the Monte Carlo method
(0.0754 mg).

an

4. Calculation of expanded uncertainty

Since there is no bias of the measurand, this
indicates that the nonlinearity of the model does not
introduce additional asymmetry into the distribution
law of the measurand, therefore, to calculate the
expanded uncertainty, we can use the kurtosis method
proposed by the authors [7].

In this case, the kurtosis of the measurand is
calculated by the formula:

1
n(dm) = u® (dm)
+n(8my, et (Bmy, ' (Smy, ) +n(p,)et (pu' (p,)+ (12)

+n(py )t (P ) (py) +1(P ) (P )’ (pr)-

M ) (m Ju' (my ) +

For the above estimates of input quantities,
standard uncertainties, and their kurtoses we have
Nn(8m)=0.

The value of the coverage factor for the
probability of 0.95 is calculated by the for-
mula [7]:

0.95

_ 0.1085n* +0.1n+1.96, at n < 0; ;3
1.96, atn > 0. (13)

Since n(dm)=0 we take k ,,=1.96. In this
case U(dm)=1.47 mg, which is very close to the
value obtained in [1] by the Monte Carlo method
(1.4955 mg).

5. Uncertainty budget

The results are summarized in the uncertainty
budget (Table 5).

In contrast to the usual uncertainty budget

for the kurtosis method [7], two columns
are added to Table 5 that take into account
the nonlinearity of the measurement mo-

del.
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Table 5
Measurement uncertainty budget for weight calibration
X, Xi u(x;) nx) | ¢ u,(y), mg | A(V), mg Alu,(»)], mg
mp . | 100 000 mg 0.05 mg 0 1 0.05 0 0
BmR,C 1.234 mg 0.02 mg 0 1 0.02 0 0
P, 1.2 kg/m* | 0.05774 kg/m* | —1.2 0 0 0 0
Pr 8000 kg/m’ 577.4 kg/m’ —-1.2 0 0 0 —0.0521
Py 8000 kg/m’ 28.87 kg/m’ -1.2 0 0 0 0.0026
Y Yo uy(y) W) | koos U(y) A, mg Alu(y)]
om 1.234 mg 0.077 mg 0 1.96 | 0.15, mg 0 0.0522, mg
In the penultimate column of the budget Conclusions

— bias of the measurand caused by each i-th

AWY)
N
input quantity; A, = ZAI.( y) — combined bias of the

i=1
measurand. In the Ilast column of the budget
Alu(y)] — bias of the standard uncertainty of the
measurand caused by the i-th input quantity and the

combined bias A[u(y)]=/A[u’(y)], Which is calculated
by the formula:

Alu(y)] = ,/z (AL, (D]}

The presence of additional columns makes it
possible to obtain an unbiased estimate of the measurand
and its uncertainty in the nonlinear model equation.

(14)

An example of measurement uncertainty evaluation
using the methods developed by the authors, at weight
calibration as an example, is considered. Unbiased
estimates of the measurand and its uncertainty are
obtained.

It is shown that when calculating the standard
and expanded uncertainty of the measurand, it is
necessary to take into account the kurtoses of the input
quantities. The obtained estimates of the standard and
expanded uncertainties of the measurand showed good
agreement with the estimates obtained by the Monte
Carlo method [1], which proves the advantage of the
proposed approaches in comparison with the GUM
method [2].

BpaxyBaHHs eKclecCiB BXiJJHUX BeJMYMH Yy NpoLemLypi
OI[iHIOBAHHSA HEBM3HAYEHOCTI BMMIPIOBAHb HA NPHUKJIAII
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AnoTauis

Ananizyetbes nipukian 9.3.1.1 3 JCGM-S1 “KaniopyBaHHs Macu”, B KOTPOMY OIMUCYIOThCSI 3BipEHHS Y TIOBITPi €TalOH-
HOI TUpi 3 TUpelo, 110 KaJiOpyeThes, SIKi MalOTh OMHY i TY XX caMy HOMiHaJIbHY Macy. 3miiiCHIOETbCS (hOPMYBaHHS MOIEi
BuMiptoBaHb. [lokazaHo, 1110 OTpuUMaHa MOJEJIb € HEJIiHIMHOI BiIHOCHO PSIAY BXiTHUX BEJIUYUH.

Y JCGM-S1 mnopiBHIOIOTLCS TPOLIEAYPU OLIHIOBAHHSI HEBM3HAYEHOCTI, 110 BMKOHYIOTbCSI HAa OCHOBI KOHIEIIii He-

BusHaueHocti GUM i merony Monre-Kapiio.

V craTTi BUKOPUCTOBYETHCS Tpollenypa, sika po3po0JjeHa aBTOpaMM Ta MOJSITa€ y pO3KJIaJdaHHI MO BUMipIOBaHHS
B psn Teiliopa Apyroro MopsiAKy 3 ypaXyBaHHSIM €KCLIECIB PO3IOALUTIB BXiIHUX BEJIUYUH.

OLHIOETbCS 3MillIEHHST pe3yJibTaTy BUMiploBaHb. OTpUMMaHO BUpa3u ISl YaCTKOBUX IMOXiTHUX Apyroro rnopsaky. Ilo-
KazaHo, IO IS MOJEN, siKa aHaJli3yeThCs, IXHI 3HAYCHHS JOPIBHIOIOTHh HYJIIO, TOMY 3HAYEHHSI 3MIillIEHHS YKMCJIOBOTO 3Ha-
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YeHHSI BMMIpIOBaHOI BEJMYMHM TAaKOX JOPIiBHIOBATUME HYJIO. 3MiHCHIOETHCSI OOYMCICHHSI CTaHAApTHOI HEBU3HAYEHOCTI
BUMIpPIOBaHOI BEJIMYMHU 3 ypaXyBaHHSIM YaCTKOBMX MOXiIHUX APYroro IMopsiIKy Ta eKCILeciB BXigHUX BeanuyuH. ITokaszaHo,
110 OTpUMaHe 3HAYEHHSI CTaHAAPTHOI HEBU3HAYEHOCTI CYTTEBO BilPi3HSIETHCS Bill aHAJIOTIYHOTO 3HAYEHHS, OTPUMAHOTO
3a npouenyporo GUM.

Jl1g 3HaXOMXKEeHHS PO3IIMPEHOI HEBM3HAYEHOCTI 3aCTOCOBYETHCSI METOJI eKCleciB. [Toka3aHo XOpoluii 30ir pe3y/abTariB,
OTPUMAHMX 3alIPOMIOHOBAHUM METOJOM, i3 pe3yJbTaToM, OTpUMaHUM MmeTtoioM Moute-Kapio.

HaBeneHo O10mKeT HEBU3HAYEHOCTI, SIKUIA BiAPi3HSIETLCS BiJ 3BMYAHOIO OIOJKETY JBOMA JOJATKOBUMMM CTOBIILISIMU,
110 BPaxOBYIOTh HEJiHiHICTh MOJeli BUMiptoBaHb. [IpUCYTHICTh AOJATKOBMX CTOBIILIB JO3BOJISIE OTPUMYBATU HE3MIillIEHY
OLIIHKY BMMIipIOBAHOI BEJIMYMHM Ta il HEBU3HAYEHOCTI NMPU HEJiHIMHOMY MOJEIbHOMY PiBHSIHHI.

KoouoBi ciioBa: HeBM3HAUCHICTh BUMIPIOBaHb; KalliOpyBaHHSI; TMpsl; HeJliHiliHe MOJeabHE PiBHSIHHSI, METOJ €KCIIECiB.

Yuer 3KCHECCOB BXOJHBIX BeJMYHMH B IpoIleaype
OIICHUBAHMS HEONpeIeJIeHHOCTH M3MEpPEeHMii HA mpuMepe
KaJMOPOBKU TMPH
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AHHOTAIMSA

Ananuzupyercsa npumep 9.3.1.1 uz JCGM-S1 “KanubpoBka Macchl”, B KOTOPOM OIKMCAHbl CIMYEHUSI B BO3IyXe
STAJIOHHOM U KaJIMOpyeMoil TMpb, UMEIOLIMX OJHY M Ty XK€ HOMMHaJbHYI0 Maccy. B JCGM-S1 cpaBHUBaIOTCS TTPOLIEAYPhI
OIICHUBAHUSI HEOTIPENIeIEHHOCTH, BHITIOTHSIEMbIE HA OCHOBe KoHIleTnu HeomnpeaereHHoctn GUM u metoma Monrte-Kapio.

B craTtbe ucnonb3yercs npoiieaypa, paspaboTtaHHas aBTOpAaMU U 3aKJIIOYAIOIIASCS B PA3IOXEHUU MOJACIU U3MEPCHUS
B psan Teitiopa BTOpOro Mopsiika ¢ y4eTOM 3KCIIECCOB pPacIpee/ieHUil BXOAHBIX BeJM4YUH. JIJIsi HAXOXICHUsS] paciiv-
PEHHOI HEOMpPeAEeHHOCTH MPUMEHSIETCsl MeTol 3KcleccoB. [lokazaHo Xopolee COBMAAEHUE Pe3yIbTaToB, MOTYYEHHBIX
Mpe/JiaraeMbIM METOZIOM, C Pe3yJbTaToM, TOJIy4eHHbIM MeTomoM MonTe-Kapio.

Kiouesbie ciioBa: HEOMNPEACICHHOCTDb HBMCpCHHﬁ; KaJ'II/I6pOBKa; TUDA, HEJIMHEHOE MOMEIbHOE YPaBHCHHUE, METO

OKCIIECCOB.
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