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Abstract 

The new extended mathematical model for evaluation uncertainties of indirect multivariable measurements, which upgrades the 

method given in Supplement 2 of guide GUM, is presented. In this model the uncertainties and correlations of parameters of the 

processing function are taken also into account. This model can be used for multivariable measurements and to describe the accuracy 

of instruments and systems that perform such measurements. The estimation of uncertainties of voltage and current on the output of a 

twoport network from indirect measurements on its input with considering influences the uncertainties of twoport  elements is 

included. 
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1. Introduction 

In the basic and technical research, in monitoring 

and technical diagnostics, many physical quantities and 

parameters have to be measured for characterize the 

object under the test. In many cases there is no 

possibilities to carry out direct measurements. Then 

indirect methods must be applied. The international 

recommendations for application of the method of 

determination estimators of values, uncertainties and 

correlations in multivariable measurements are described 

in Supplement 2 to the GUM.  

Directly measured on input the n–element 

measurand X is l processed to the output m- measurand Y 

by relation  

Y= F(X, P)                                   (1) 

In this paper are used such designations: X, Y -input and 

output measurands; X0,Y0 - their initial  values;  𝑿, 𝒀 – 

vectors of estimators of n values 𝑥i and of m values 𝑦j; ux, 

uy and uδx,, uδy – their absolute and relative standard 

uncertainties; 𝑭(X), 𝑭(X,P) – ideal and real multivariable 

functional of processing 𝑿 to Y; UF, UδF - its covariance 

matrices; 𝑺 =𝝏𝒀/𝝏𝑿 , 𝑺𝜹 –sensitivity matrices for 

absolute and relative uncertainties; UX, UY, UY0, UδX, UδY, 

UYP – covariance matrices of X, Y; UP, U(P,X) – 

covariance and correlation matrices of k parameters P of 

the processing functional  F of the measurement circuit 

For the ideal functional F(·), i.e. when uncertainties of 

its parameters P are negligible, the propagation of 

absolute and relative variances of the t measurand X to Y 

ones  are:  

𝑼𝒀 = 𝑺 𝑼𝑿𝑺𝐓                                  (2a) 

𝑼𝜹𝒀 = 𝑼𝒀𝟎 + 𝑺𝜹 𝑼𝜹(𝑿−𝑿𝟎) 𝑺𝜹
𝐓         (2b) 

.Even in the case when the basic multivariable relation (1) 

is nonlinear, in the most cases for uncertainties of X and Y 

as small deviations, their scatter regions can be defined by 

a model of joint multidimensional normal probability 

distributions. Then, for a given probability density p0 the 

distribution region for p ≥p0 takes the form of a n- and m-

dimensional hyper-ellipsoids, if covariance matrix is 

positive definite, with centers at the ends of their 

averages.  

Matrices UX and UY describe the cover regions of n 

and m dimension probabilities if their det(Ui) > 0 or 

det(Ri) > 0 as equal condition for matrix of the correlation 

coefficients, called the correlator R. For example, the 

relation between 

 matrix 𝑼𝑿 and correlator 𝑹𝒙 of the size 3D (3x3) is 

𝑼𝑿 = 𝒖(𝑿) 𝑹𝒙 𝒖
𝑻(𝑿) =                                   

= [

𝑢𝑥1
0 0

0 𝑢𝑥2
0

0 0 𝑢𝑥3

] [

1 𝜌12 𝜌13

𝜌12 1 𝜌23

𝜌13 𝜌23 1
] [

𝑢𝑥1
0 0

0 𝑢𝑥2
0

0 0 𝑢𝑥3

]

𝑻

 

= [

𝑢𝑥1
2 𝜌12𝑢𝑥1

𝑢𝑥2
𝜌13𝑢𝑥1

𝑢𝑥3

𝜌12𝑢𝑥1
𝑢𝑥2

𝑢𝑥2
2 𝜌23𝑢𝑥2

𝑢𝑥3

𝜌13𝑢𝑥1
𝑢𝑥3

𝜌23𝑢𝑥2
𝑢𝑥3

𝑢𝑥3
2

]          (2c)  

All, or some components of the vector 𝒀 of output 

results can be next used separately or jointly. In the latter 

case it is necessary to find and take in considerations also 

the correlations between  pairs of variables yi.  

Relations (2a,b) for covariance matrices 𝑼𝒀, 𝑼𝜹 of 

absolute and relative uncertainties of estimators 𝑦j of 

results, obtained for indirectly observed m-dimensional 

measurand 𝒀, are the same whether the measurement 

functional 𝑭(X,P) is linear or linearized by the first 

derivative. All, or some components of measurement 

results 𝒀 can be next used separately or jointly. In the 

latter case it is also necessary to take in considerations the 

correlations between variables yi of output measurand 𝒀. 
In many cases the indirect measurements of m – 

components of the measurand 𝒀 are made now by 

automatic measurement systems. If not, then a collection 

of individual quantities of X should be synchronically 

measured, and from above data both, of  𝒀 and covariance 

matrices UX, UY externally calculated.  

 

2.   Basic formulas of the extended method  

The actual GUM-S2 method [1] and earler literature, 

e,g. [2 -5] do not cover situations of the not accurate 

multivariable functional F(X, P), for example due to 

approximation, the limited frequency range of transfer 

function, uncertainties of passive and active elements, 

AC/DC converters and analogue multipliers, and also 
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when measurements are possible only indirectly via other 

nonideal internal parameters of the tested object. In 

precise measurements, the rounding of calculations also 

becomes essential, including ones resulting from the 

precision of the digital part of the circuit. In the 

instrumental measuring systems, the real multivariable 

processing function is 𝒀 = 𝑭(𝑿,𝑷) – eq. (3) given in 

Table 1 [8,11]. The accuracy of indirect measurements of 

the multivariable measurand Y depends on the uncertainty 

and correlations of X and also on uncertainties and 

correlations of its parameters P - formula (5a). The 

relative uncertainty propagation is also given. Developed 

is the extended formula (5) for the covariance matrix UY, 

which includes all influences on uncertainties uy and its 

simpler cases (6) – (9a-c) given also in Table 1. 

Table.1. Formulas of the extended method of estimate uncertainties of indirect multivariable measurements. 

General 

formula 

𝒀 = 𝑭(𝑿,𝑷)       (uF ≠ 0)                               (3) 

where:  𝒀 = [𝒚𝟏, , . . 𝒚𝒎]𝑻,    𝑿 = [𝒙𝟏, … 𝒙𝒏]
𝑻,    𝑷 = [𝒑𝟏, 𝒑𝟐, … 𝒑𝒌]

𝑻          (3a,b,c)   

Deviations 

(absolute errors) 

Δ𝒀 =  Δ𝑭(𝑿,𝑷) = 𝑺𝑿,𝑷[𝜟𝑿, 𝜟𝑷]T = 𝑺𝑿 𝜟𝑿 + 𝑺𝑷𝜟𝑷                    (4)        

where: 𝑺𝑿,𝑷 - sensitivity matrix of  function 𝑭(𝑿,𝑷) of  dimensions [(n+k)×m], 

 𝑺𝑿 ≡ 𝑺, 𝑺𝑷, 𝑺𝜹  - sensitivity matrices of influence of deviations 𝜟𝑿, 𝜟𝑷 or 𝜹𝑿 =
𝜟𝑿

𝑿
,  𝜹𝑷 =

𝜟𝑷

𝑷
 

Sensitivity 

matrices  

of ΔX, δX, ΔP 
𝑺𝑿 = [

𝜕𝑦1

𝜕𝑥1
…

𝜕𝑦1

𝜕𝑥𝑛
… … …

𝜕𝑦𝑚

𝜕𝑥1
…

𝜕𝑦𝑚

𝜕𝑥𝑛

],     𝑺𝒑 = [

𝜕𝑦1

𝜕𝑝1
…

𝜕𝑦1

𝜕𝑝𝑘
… … …

𝜕𝑦𝑚

𝜕𝑝1
…

𝜕𝑦𝑚

𝜕𝑝𝑘

] ,      𝑺𝜹 = [

𝑥1

𝑦1

𝜕𝑦1

𝜕𝑥1
…

𝑥𝑛

𝑦1

𝜕𝑦1

𝜕𝑥𝑛
… … …

𝑥1

𝑦𝑚

𝜕𝑦𝑚

𝜕𝑥1
…

𝑥𝑛

𝑦𝑚

𝜕𝑦𝑚

𝜕𝑥𝑛

]       (4a,b,c)  

Propagation 

 of variances 

 general case:  

V= 𝑆𝑈𝑆𝑃
𝑇≠ 0 

𝑼𝒀(𝑿, 𝑷) =  𝑺𝑿,𝑷 𝑼𝑿,𝑷  = [𝑺, 𝑺𝒑] [
𝑼𝑿 𝑼

𝑼𝑻 𝑼𝒑
] [

𝑺𝑻

𝑺𝑷
𝑻]                                (5) 

𝑼𝒀 = 𝑼𝒀𝑿 + 𝑼𝒀𝑭 = 𝑺𝑿𝑼𝑿𝑺𝑿
𝑻 + 𝑼𝒀𝑭                                                        (5a) 

         𝑼𝒀𝑭 = 𝑺𝒑𝑼𝒑𝑺𝑷
𝑻 + 𝑺𝑿𝑼𝑺𝑷

𝑻 + (𝑺𝑿𝑼𝑺𝑷
𝑻)𝑻= 𝑺𝑷𝑼𝑷𝑺𝑷

𝑻 + 𝑽 + 𝑽𝑻                  (5b) 

𝑼𝒀 = [
𝑢𝑦1

2 … 𝜌𝑦1𝑚𝑢𝑦1𝑢𝑦𝑚

… … …
𝜌𝑦1𝑚𝑢𝑦𝑚𝑢𝑦1 … 𝑢𝑦𝑚 

2
] ,     𝑼𝑿 = [

𝑢𝑥1
2 …   𝜌𝑥1𝑛𝑢𝑥1𝑢𝑥𝑛

… … …
𝜌𝑥1𝑛𝑢𝑥𝑛𝑢𝑥1 … 𝑢𝑥𝑛 

2
]     (5c, d) 

 
  
𝑼𝒑

= [
𝑢𝑝1

2 …     𝜌𝑝1𝑘𝑢𝑝1𝑢𝑝𝑘

… … …
𝜌𝑝1𝑘𝑢𝑝𝑘𝑢𝑝1 … 𝑢𝑝𝑘 

2
] ,      𝑼 = [

𝜌𝑥1𝑝1𝑢𝑥1𝑢𝑝1 … 𝜌𝑥1𝑝𝑘𝑢𝑥1𝑢𝑝𝑘

… … …
𝜌𝑥𝑛𝑝1𝑢𝑥𝑛𝑢𝑝1 … 𝜌𝑥𝑛𝑝𝑘𝑢𝑥𝑛𝑢𝑝𝑘

]     (5e, f) 

 

Covariance 

matrices: 

UY,  UX,  UP ; 

and matrix U 

of   X, P 

correlation  

P
ro

p
ag

at
io

n
 o

f 
v

ar
ia

n
ce

s 
fo

r 
V

 =
 0

 

absolute 

uncertainty 
𝑼𝒀 = 𝑺 · 𝑼𝑿 · 𝑺𝑻 + 𝑺𝑷 · 𝑼𝑷 · 𝑺𝑷

𝑻                             (6) 

relative 

uncertainty 
𝑼𝜹(𝒀−𝒀𝟎) = 𝑺𝜹𝑼𝜹(𝑿−𝑿𝟎)𝑺𝜹

𝑻 + 𝑺𝜹𝑷𝑼𝜹𝑷𝑺𝜹𝑷
𝑻                            (7) 

 

type A  

and  

type B 

uncertainty 

components  

 

𝑼𝒀 = 𝑼𝒀𝑨 + 𝑼𝒀𝑩 = (𝑺𝑼𝑿𝑨𝑺𝑻 + 𝑺𝑷𝑼𝑷𝑨𝑺𝑷
𝑻) + (𝑺𝑼𝑿𝑩𝑺𝑻 + 𝑺𝑷𝑼𝑷𝑩𝑺𝑷

𝑻)              (8) 

 𝑼𝑿𝑨 = [
𝑢𝑥1𝐴

2 … 𝜌𝐴𝑥1,𝑛𝑢𝑥1𝐴𝑢𝑥𝑛𝐴

… … …
𝜌𝐴𝑥1,𝑛𝑢𝑥𝑛𝐴𝑢𝑥1𝐴 … 𝑢𝑥𝑛𝐴 

2
], 𝑼𝑿𝑩 = [

𝑢𝑥1𝐵
2 … 𝜌𝐵𝑥1,𝑛𝑢𝑥1𝐵𝑢𝑥𝑛𝐵

… … …
𝜌𝐵𝑥1,𝑛𝑢𝑥𝑛𝐵𝑢𝑥1𝐵 … 𝑢𝑥𝑛𝐵 

2
]  

  
𝑼𝑷𝑨

= [
𝑢𝑝1𝐴

2 … 𝜌𝑨𝑝1𝑘𝑢𝑝1𝐴𝑢𝑝𝑘𝐴

… … …
𝜌𝑨𝑝1𝑘𝑢𝑝𝑘𝐴𝑢𝑝1𝐴 … 𝑢𝑝𝑘𝐴 

2
] ,

  
𝑼𝑷𝑩

= [
𝑢𝑝1𝐵

2 … 𝜌𝑨𝑝1𝑘𝑢𝑝1𝐵𝑢𝑝𝑘𝐵

… … …
𝜌𝑩𝑝1𝑘𝑢𝑝𝑘𝐵𝑢𝑝1𝐵 … 𝑢𝑝𝑘𝐵 

2
] 

(8a-d) 

Uncertainties and correlation coefficient of two variables:                                 

𝑢1
2 = 𝑢1𝐴

2 + 𝑢1𝐵
2 ;       𝑢2

2 = 𝑢2𝐴
2 + 𝑢2𝐵

2 ;    𝜌1,2 =
𝜌𝐴𝑢1𝐴𝑢2𝐴+𝜌𝐵𝑢1𝐵𝑢2𝐵

√𝑢1𝐴
2 +𝑢1𝐵

2 √𝑢2𝐴
2 +𝑢2𝐵

2
                      (8e, f, g)                             

 

The relationships between small deviations of the 

values of n-elements of the input measurand X and m- 

elements of the indirectly measured measurand Y are 

described by the formula (4). The deviations of the 

measuring system P parameters are determined from their 

nominal values on the basis of the maximum permissible 

errors (MPE) known from their technical data or as 

deviations from the estimators of their values determined 

in measurements. Sensitivity matrices SX, Sδ and SP (4a-c) 

express the influence of deviations 𝜟𝑿, 𝜹𝑿 and 𝜟𝑷 on the 

output deviations 𝜟𝒀, 𝜹𝒀 of the initial quantities. The 

deviations of known values or their course during the 

period of measurement experiment, are removed from the 

results by corrections. Other, which are not  known and  

not determinate, are randomized. For the single-parameter 

measurand, the statistical properties of a set of deviations 



of each quantity are described in GUM [1] by the standard 

uncertainty u as the geometric sum of its components uA 

and uB. For multidimensional measurands, the equivalent 

of the variance of single variable, are their covariance 

matrices, e.g.  symmetrical matrices 𝑼𝒀, 𝑼𝑿 and 𝑼𝑷 (5c-

e). They contain on the main diagonal squares of standard 

uncertainties (variances) of individual quantities, and on 

other places, products of the corresponding one from n(n-

1)/2 correlation coefficients and uncertainties of both type 

 correlated quantities. 

 Sets of random deviations from estimators of the 

output measurand Y variables are the result of multi-

parameter distributions of the deviations of the input 

measurand X variables and deviations of parameters P of 

the measurement system performing the multivariable 

functional F(X, P). When linearizing each of its functions 

for small deviations, the general formula (5) for the UY 

covariance matrix in multi-parameter measurements and 

its subsequent developed forms (5a), (5b) is obtained 

from 

the propagation law of variance. Uncertainties and 

correlation coefficients of n variables of the measurand X 

and of k system parameters P are included in the 𝑼𝑿 and 

𝑼𝑷 covariance matrices (5c,d),  

 In general case, variables X can be also correlated 

with parameters P of measuring system. This is described 

by the matrix U with the size [n x k], given in the formula 

(5f). Such relationship may appear under the influence of 

a common external random effect on X and P, e.g. a 

variable outside temperature. 

The number of independent correlation coefficients in 

the U matrix is smaller by the number of m equations 

elements of measurand Y. In the measurement practice, 

including electrical measurement systems, there is usually 

a simpler case when the directly measured quantities X 

and deviations of parameters P of the measuring system 

are not correlated (e.g. X is differently located then P and 

they do not affect themselves and their external influences 

are also not related). Then the covariance matrix U does 

not occur and  𝑽 = 𝑽𝑻 = 𝟎. The propagation equation of 

variance (5b) has then a simpler two-component form (6). 

The first component depends on the uncertainties and 

correlations of elements of the input measurand X, similar 

as in the classic approach according to GUM-S2 [1]. The 

second component, depending on the uncertainty of the 

processing function, appeared in the extended method and 

constitutes its essence. It expresses the influence of 

uncertainties and correlation coefficients ρp of P 

parameters of the system processing function F(X,P), 

analog or digital.  

From (6) follows the covariance matrix (7) for the 

relative uncertainties of  𝒀 − 𝒀𝟎 increments, or of Y, if 

uncertainties of the initial input quantities are negligible, 

i.e. ||𝒖𝑿(𝑿)|| ≫ ||𝒖𝑿(𝑿𝟎)|| ≈ 𝟎 (measurement of values 

close to the beginning of the range are usually avoided) 

and the covariance matrix ||𝑼𝑿(𝑿 − 𝑿𝟎 )|| ≈ ||𝑼𝑿(𝑿)||. 
Relation (7) was not included in Supplement 2 of GUM.  

In the papers [6-11], the authors stated that only sets 

of deviations with uncertainties of the same type, i.e. only 

of uA or only of uB, can be correlated with each other, for 

variables of the same or of different multi-measurands. 

Covariance matrices of multi-measurands, similarly as the 

variance 𝑢2 = 𝑢𝐴
2 + 𝑢𝐵

2  of each single measured variable, 

can be presented also as the sum of two component 

matrices of type A and B, i.e.UX = UXA+UXB, UY = 

UYA+UYB - formula (8). The elements of component 

matrices type A and B are given in (8a)-(8d) and method 

of their calculations in (8e,f,g). 

For the measurand X, only the correlation coefficients 

ρxA in the UXA matrix can be experimentally determined by 

synchronous measurements of variables of X. On the 

other hand, the coefficients ρB of the UXB matrix, similarly 

as the uncertainties of type B, have to be estimated 

heuristically. If two quantities are measured with the same 

or similar instrument and under the same conditions, then 

the correlation coefficient ρxB equal to 1 [4], [5] can be 

assumed. For different instruments and in different 

operating conditions this coefficient is closer to 0. The 

correlation coefficient ⎼1 is rather rare. It occurs e.g. 

when changes of both correlated variables from common 

interactions, have the opposite signs. 

Type A and type B uncertainties for individual 

quantities of the output measurand Y should be carried out 

separately from the component UYA, UYB of the 

covariance matrix UY, according to formulas (8), (8a-g). If 

during the measurements the values of P system 

parameters are constant, the 𝑼𝑷𝑨 matrix does not occur, 

and the UP =UPB  matrix is estimated heuristically for the 

long period changes of deviations ΔP. However, if ΔP is 

changing randomly in the duration of the measurement 

experiment, then the elements of their 𝑼𝑷𝑨 component 

matrix must also be estimated heuristically based on 

technical data and own knowledge. It is also valuable to 

perform additional measurements in the specially created 

influencing conditions to estimate the level of the short 

time random changes in P parameters. 

In several papers, authors described how to use this 

new method. Few examples of implementation this model 

to indirect measurement of a two-terminal circuit 

parameters through a four-terminal T type network, 

considering the uncertainties and correlation of its 

impedances in general case and for U= 0 are presented in 

detail in [8-11]. One of these examples, the indirect 

measurements of voltage and current at the output of a 

loaded four-terminal circuit is considered in detail below. 

 

3. Uncertainties of indirect measurements of the 

twoport output variables 

Let us consider the indirect measurements of the 

voltage and current of an inaccessible branch on the 

output of a linear passive twoport network based on 

measurements of these variables on its input terminals. It 

was assumed that this twoport has the T-type structure 

given in Fig. 1. Then observed is the 2D measurand Y = 

[𝑈𝑜𝑢𝑡, 𝐼𝑜𝑢𝑡]
T
.  The accuracy of Y are determined from 

measurements of the input voltage and current, i.e.: X = 

[𝑈𝑖𝑛, 𝐼𝑖𝑛]T. Accuracy of results depends also from values, 

uncertainties and correlations of twoport impedances Z1, 

Z2, Z3. 



 
Fig 1. Diagram of a passive twoport T-type circuit 

For the T-type passive twoport from Kirchhoff laws: 

𝐼𝑖𝑛 = 𝐼2 + 𝐼𝑜𝑢𝑡; 𝑈𝑖𝑛 = 𝑍2𝐼2 + 𝑍1𝐼𝑖𝑛;  𝑍2𝐼2 = 𝑈𝑜𝑢𝑡 + 𝑍3𝐼𝑜𝑢𝑡 

the following relations for the output variables are 

obtained 

 

3 3 1
1 3

2 2

1out in in

Z Z Z
U U Z Z I

Z Z

   
       
   

 

 

1

2 2

1
1out in in

Z
I U I

Z Z

 
    

 
 

 

The relation between 𝑈𝑜𝑢𝑡 , 𝐼𝑜𝑢𝑡 and directly measured 

𝑈𝑖𝑛, 𝐼𝑖𝑛 of the T-type twoport circuit has the form of 

matrix function Y = B·X , i.e.: 

[
𝑈𝑜𝑢𝑡

−𝐼𝑜𝑢𝑡
] = B · [

𝑈𝑖𝑛

−𝐼𝑖𝑛
] = [

𝐵11𝑈𝑖𝑛 − 𝐵12𝐼𝑖𝑛
𝐵21𝑈𝑖𝑛 − 𝐵22𝐼𝑖𝑛

]  (10a) 

where 

 𝑩 = [
𝐵11 𝐵12

𝐵21 𝐵22
] = [

1 +
𝑍3

𝑍2
𝑍1 + 𝑍3 +

𝑍1𝑍3

𝑍2

1

𝑍2
1 +

𝑍1

𝑍2

] (10b) 

If the twoport is passive and reversible, then the 

determinant of the matrix B satisfies the equation  

det(𝑩) = 𝐵11𝐵22 − 𝐵12 𝐵21 = 1            (11) 

and only three of the matrix B elements are independent, 

the fourth one follows from (11). 

In the opposite situation, when tested are variables on 

input of the twoport and measured are on its output, the 

matrix A is used, which for the twoport T is like B with 

replaced impedances 𝑍3 and 𝑍1. 
 

3.1 Matrix 𝑼𝒀  when UP = 0 (GUM-S2 case)   

If uncertainties 𝑢𝑍𝑖
of impedances Zi (i=1,2,3) are 

negligible, then the matrix UP = 0 and from (6) results that 

the output covariance matrix 𝑼𝒀 = 𝑼𝒀𝑿, as it is in GUM-

S2 method. If the measured twoport quantities X are 

uncorrelated, its input covariance and the sensitivity 

matrices are 

𝑼𝑿 = [
𝑢𝑈𝑖𝑛

2 0

0 𝑢𝐼𝑖𝑛
2 ],   𝑺𝑿 = [

   𝐵11 −𝐵12

−𝐵21    𝐵22
]. 

From (6) with UYP = 0  is obtained UY = UYX ,  i.e. 

𝑼𝒀𝑿 = 𝑺𝑿𝑼𝑿𝑺𝑿
𝑻 = 

[
𝐵11

2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2 −𝐵11𝐵21𝑢𝑈𝑖𝑛

2 − 𝐵12𝐵22𝑢𝐼𝑖𝑛
2

−𝐵11𝐵21𝑢𝑈𝑖𝑛

2 − 𝐵12𝐵22𝑢𝐼𝑖𝑛
2 𝐵21

2 𝑢𝑈𝑖𝑛

2 + 𝐵22
2 𝑢𝐼𝑖𝑛

2 ] (12) 

Then in the case as is consider in GUM-S2, i.e. exact 

processing function F =B·X, variances of the current and 

voltage at output terminals of T-twoport and their 

correlation coefficient 𝜌𝑜𝑢𝑡 are:  

𝑢𝑈𝑜𝑢𝑡
2 = 𝐵11

2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2 =
1

𝑍2
2 [(𝑍2 + 𝑍3)

2𝑢𝑈𝑖𝑛

2 + 

   +(𝑍1𝑍2 + 𝑍3𝑍2 + 𝑍1𝑍3)
2𝑢𝐼𝑖𝑛

2 ]                        (13a) 

𝑢𝐼𝑜𝑢𝑡
2 = 𝐵21

2 𝑢𝑈𝑖𝑛

2 + 𝐵22
2 𝑢𝐼𝑖𝑛

2 =
1

𝑍2
2 [𝑢𝑈𝑖𝑛

2 +(𝑍1 + 𝑍2)
2𝑢𝐼𝑖𝑛

2 ]  

        𝜌𝑜𝑢𝑡 = −
𝐵11𝐵21𝑢𝑈𝑖𝑛

2 +𝐵12𝐵22𝑢𝐼𝑖𝑛
2

𝑢𝐼𝑜𝑢𝑡𝑢𝑈𝑜𝑢𝑡

                 (13b, c) 

Correlation coefficient 𝜌𝑜𝑢𝑡 ≠ 0 and is always negative, 

because  𝐵11𝐵21 > 0 and 𝐵12𝐵22 > 0. 
For 𝑍3 = 0 a voltage divider is created, and the variance 

patterns of output variables simplify, i.e.: 

𝑢𝑈𝑜𝑢𝑡
2 = 𝐵11

2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2 = 𝑢𝑈𝑖𝑛

2 + 𝑍1
2𝑢𝐼𝑖𝑛

2 , 

   𝑢𝐼𝑜𝑢𝑡
2 =

1

𝑍2
2 [𝑢𝑈𝑖𝑛

2 +(𝑍1 + 𝑍2)
2𝑢𝐼𝑖𝑛

2 ]                 (14a, b) 

In general case when the input variables are correlated the 

input covariance matrix is: 

𝑼𝑿 = [
𝑢𝑈𝑖𝑛

2 𝜌𝑖𝑛𝑢𝑈𝑖𝑛
𝑢𝑈𝑖𝑛

𝜌𝑖𝑛𝑢𝑈𝑖𝑛
𝑢𝑈𝑖𝑛

𝑢𝐼𝑖𝑛
2 ]               (15) 

These uncertainties are modified by correlation: 

𝑢𝑈𝑜
2 = 𝑢𝑈𝑜𝑢𝑡

2 − 2𝐵11𝐵12𝜌𝑖𝑛𝑢𝑈𝑖𝑛
𝑢𝐼𝑖𝑛

 

𝑢𝐼𝑜
2 = 𝑢𝐼𝑜𝑢𝑡

2 − 2𝐵21𝐵22𝜌𝑖𝑛𝑢𝑈𝑖𝑛
𝑢𝐼𝑖𝑛

        (16a,b) 

and correlation coefficient:   

𝜌𝑜 =
−𝐵11𝐵21𝑢𝑈𝑖𝑛

2 −𝐵12𝐵22𝑢𝐼𝑖𝑛
2 +(𝐵11𝐵22+𝐵12𝐵21)𝜌𝑖𝑛𝑢𝑈𝑖𝑛

𝑢𝐼𝑖𝑛

𝑢𝐼𝑜𝑢𝑈𝑜

 (17) 

In the case of 𝜌𝑖𝑛 = 1, these absolute and relative 

uncertainties are: 

 𝑢𝑈𝑜
= |𝐵11𝑢𝑈𝑖𝑛

− 𝐵12𝑢𝐼𝑖𝑛
|,   

 𝑢𝐼𝑜 = |𝐵21𝑢𝑈𝑖𝑛
− 𝐵22𝑢𝐼𝑖𝑛

|,               (18a,b) 

  𝛿𝑈𝑜
=

𝑢𝑈𝑜

𝑈𝑜𝑢𝑡
=

|𝐵11𝑢𝑈𝑖𝑛
−𝐵12𝑢𝐼𝑖𝑛

|

𝐵11𝑈𝑖𝑛−𝐵12𝐼𝑖𝑛
, 

 𝛿𝐼𝑜 =
𝑢𝐼𝑜

𝐼𝑜𝑢𝑡
=

|𝐵21𝑢𝑈𝑖𝑛
−𝐵22𝑢𝐼𝑖𝑛

|

𝐵22𝐼𝑖𝑛−𝐵21𝑈𝑖𝑛
,          (19a, b) 

and correlation coefficient 

𝜌𝑜 = −
(𝐵11𝑢𝑈𝑖𝑛

−𝐵12𝑢𝐼𝑖𝑛
)·(𝐵21𝑢𝑈𝑖𝑛

−𝐵22𝑢𝐼𝑖𝑛
)

|(𝐵11𝑢𝑈𝑖𝑛
−𝐵12𝑢𝐼𝑖𝑛

)·(𝐵21𝑢𝑈𝑖𝑛
−𝐵22𝑢𝐼𝑖𝑛

)|
= ±1   (20) 

and its sign depend on the sign of expression in module: 

for plus  𝜌𝑜 = −1 and for minus 𝜌𝑜 = 1. 

3.2 Component 𝑼𝒀𝑷  of covariance matrix UY for 

uncorrelated impedances of twoport T 

Covariance matrix UP for uncorrelated impedances 

𝑍1, 𝑍2, 𝑍3 of the  twoport T and sensitivity matrix 𝑺𝑷 have 

the following forms  

𝑼𝑷  = [

𝑢𝑍1
2 0 0

0 𝑢𝑍2
2 0

0 0 𝑢𝑍3
2

] , 

𝑺𝑷 =

=

[
 
 
 
 −𝐼𝑖𝑛 (1 +

𝑍3

𝑍2
) , −

𝑍3

𝑍2
2 (𝑈𝑖𝑛 − 𝐼𝑖𝑛𝑍1),

𝑈𝑖𝑛

𝑍2
− 𝐼𝑖𝑛 (1 +

𝑍1

𝑍2
)

𝐼𝑖𝑛
𝑍2

1

𝑍2
2 (𝑈𝑖𝑛 − 𝐼𝑖𝑛𝑍1) 0

]
 
 
 
 

 

(21a,b) 

By entering the designation for current in impedance  

𝑍2 as  𝐼2 = (𝑈𝑖𝑛 − 𝐼𝑖𝑛𝑍1)/𝑍2, from Kirchhoff's first law is 
obtained  𝐼𝑖𝑛 = 𝐼𝑜𝑢𝑡 + 𝐼2 and then the form of sensitivity 

matrix SP  simplifies:  

𝑺𝑷 =
1

𝑍2
[
−𝐼𝑖𝑛(𝑍2 + 𝑍3) −𝑍3𝐼2 −𝑍2𝐼𝑜𝑢𝑡

𝐼𝑖𝑛 𝐼2 0
] (22) 
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The equation (6) shows that the 𝑼𝒀𝑷 component of the 

covariance matrix 𝑼𝒀 = 𝑼𝒀𝑿 + 𝑼𝒀𝑷 of the output 

quantities, depending on the uncertainties of uncorrelated 

impedances of the T twoport  is 

𝑼𝒀𝑷 = 𝑺𝑷𝑼𝑷𝑺𝑷
𝑻 =

1

𝑍2
2 [

𝐼𝑖𝑛
2 (𝑍2 + 𝑍3)

2𝑢𝑍1

2 + 𝐼2
2𝑍3

2𝑢𝑍2

2 + 𝐼𝑜𝑢𝑡
2  𝑍2

2𝑢𝑍3

2 ; −𝐼𝑖𝑛
2 (𝑍2 + 𝑍3)𝑢𝑍1

2 − 𝐼2
2𝑍3𝑢𝑍2

2

−𝐼𝑖𝑛
2 (𝑍2 + 𝑍3)𝑢𝑍1

2 − 𝐼2
2𝑍3𝑢𝑍2

2 ; 𝐼𝑖𝑛
2 𝑢𝑍1

2 + 𝐼2
2𝑢𝑍2

2 ]  

(23) 

Despite the non-correlation of impedance Zi, when the 

𝑼𝒀𝑷 matrix is diagonal, Uout, Iout as variables of the output 

measurand Y, will be correlated. From (15b),(19a-c) and 

(20) for uncorrelated quantities X, obtained are the 

resultant variances for the  output voltage and current are: 

𝑢𝑈𝑜𝑢𝑡
2 =

1

𝑍2
2 [(𝑍2 + 𝑍3)

2𝑢𝑈𝑖𝑛

2 + (𝑍1𝑍2 + 𝑍3𝑍2 + 𝑍1𝑍3)
2𝑢𝐼𝑖𝑛

2

+ 𝐼2
2𝑍3

2𝑢𝑍2
2 + 𝐼𝑜𝑢𝑡

2  𝑍2
2𝑢𝑍3

2 ]             

𝑢𝐼𝑜𝑢𝑡
2

1

𝑍2
2 [𝑢𝑈𝑖𝑛

2 +(𝑍1 + 𝑍2)
2𝑢𝐼𝑖𝑛

2 + 𝐼𝑖𝑛
2 𝑢𝑍1

2 + 𝐼2
2𝑢𝑍2

2 ] (24a, b) 

When 𝑍3 = 0, the T-type twoport becomes a voltage 

divider Z1, Z2.  

The variations of current and voltage at its output are: 

𝑢𝐼𝑜𝑢𝑡
2 = (𝑢𝑈𝑖𝑛

2 +(𝑍1 + 𝑍2)
2𝑢𝐼𝑖𝑛

2 + 𝐼𝑖𝑛
2 𝑢𝑍1

2 + 𝐼2
2𝑢𝑍2

2 )/𝑍2
2  

    

𝑢𝑈𝑜𝑢𝑡
2 = 𝑢𝑈𝑖𝑛

2 + 𝑍1
2𝑢𝐼𝑖𝑛

2 + 𝐼𝑜𝑢𝑡
2  𝑢𝑍1

2                           (25a, b) 

3.3. Matrix UY for correlated impedances and 

uncorrelated input variables X 

In this case U = 0, V= 0 and from (6) and (15), for the 

accuracy of functional F is responsible the covariance 

matrix 𝑼𝒀𝑷 = 𝑺𝑷𝑼𝑷𝑺𝑷
𝑻 , i.e.:  

𝑼𝒀𝑷 =
1

𝑍2
2 [

−𝐼𝑖𝑛(𝑍2 + 𝑍3) −𝐼2𝑍3 −𝐼𝑜𝑢𝑡𝑍2

𝐼𝑖𝑛 𝐼2 0
]𝑼𝑷 · 

· [
−𝐼𝑖𝑛(𝑍2 + 𝑍3) −𝐼2𝑍3 −𝐼𝑜𝑢𝑡𝑍2

𝐼𝑖𝑛 𝐼2 0
]
𝑻

    (26)     

where: the covariance matrix 𝑼𝑷 of impedances as system 

parameters P  has the form 

𝑼𝑷 = [

𝑢𝑍1
2 𝜌𝑍12𝑢𝑍1

𝑢𝑍2
𝜌𝑍13𝑢𝑍1

𝑢𝑍3

𝜌𝑍12𝑢𝑍1
𝑢𝑍2

𝑢𝑍2
2 𝜌𝑍23𝑢𝑍2

𝑢𝑍3

𝜌𝑍13𝑢𝑍1
𝑢𝑍3

𝜌𝑍23𝑢𝑍2
𝑢𝑍3

𝑢𝑍3
2

]  (27) 

3.3.1  Uncertainty of output voltage  

For 𝜌𝑖𝑛 = 0, from (17a) and after calculation of the 𝑼𝒀𝑷 

elements, the variance of output voltage is 

𝑢𝑈𝑜𝑢𝑡
2 = 𝐵11

2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2 + 𝑢𝑈𝐹
2                 (28) 

where: 𝑢𝑈𝐹
2 = 𝑊𝑈𝑍1

2 𝑢𝑍1
2 + 𝑊𝑈𝑍2

2  𝑢𝑍2
2 + 𝑊𝑈𝑍3

2 𝑢𝑍3
2 + 

+2 [
𝜌𝑍12𝑊𝑈𝑍1

𝑊𝑈𝑍2
𝑢𝑍1

𝑢𝑍2
+ 𝜌𝑍23𝑊𝑈𝑍2

𝑊𝑈𝑍3
𝑢𝑍2

𝑢𝑍3

+𝜌𝑍13𝑊𝑈𝑍1
𝑊𝑈𝑍3

𝑢𝑍1
𝑢𝑍3

](28a) 

𝐵11 = 1 +
𝑍3 

𝑍2
;    𝐵12 = 𝑍1 + 𝑍3 +

𝑍1𝑍3

𝑍2
; 

 𝑊𝑈𝑍1
=𝐼𝑖𝑛 (1 +

𝑍3

𝑍2
) ;  𝑊𝑈𝑍2

=𝐼2
𝑍3

𝑍2
;  𝑊𝑈𝑍3

= 𝐼𝑜𝑢𝑡  (28b − f)                   

From (2a) and (30a-f) and 𝑢𝑈𝐹
2 ≥ 0 results the condition 

for the permissible values of correlation coefficients. The 

determinant of correlator R cannot be  negative, i.e.: 

𝑑𝑒𝑡(𝑹) = 𝑑𝑒𝑡 [

1 𝜌𝑍12 𝜌𝑍13

𝜌𝑍12 1 𝜌𝑍23

𝜌𝑍13 𝜌𝑍23 1
] = 

= 1 − 𝜌𝑍12
2 − 𝜌𝑍13

2 − 𝜌𝑍23
2 + 2𝜌𝑍12𝜌𝑍13𝜌𝑍23 ≥ 0      (29) 

Thus, the minimal correlation coefficients of three 

impedance pairs 𝜌𝑍12 = 𝜌𝑍13 = 𝜌𝑍23 = −1 cannot occur 

simultaneously, because the 𝑑𝑒𝑡(𝑹) = −4 ≤ 0. If one of 

three coefficients, e.g. 𝜌𝑍12 = ±1, then others should be 

𝜌𝑍23 = ±𝜌𝑍13. It have to be analyzed when the 

correlations of the T-type twoport impedances and the 

determinant of matrix 𝑹 and matrix 𝑼𝑷 are together equal 

to zero. The boundary values of three correlation 

coefficients for area det(𝑹) = 0 result from the equation 

(29). The correlation coefficient 𝜌𝑍23 can be obtained 

from the expression 

𝜌𝑍23 = f(𝜌𝑍12, 𝜌𝑍13)=𝜌𝑍12𝜌𝑍13 ± √(1 − 𝜌𝑍12
2 )(1 − 𝜌𝑍13

2 )
  (30) 

Condition: 1 − 𝜌𝑍12
2 − 𝜌𝑍13

2 − 𝜌𝑍23
2 + 2𝜌𝑍12𝜌𝑍13𝜌𝑍23 ≥ 0 

means that the value of 𝜌𝑍23 belongs to the range  

𝜌𝑍12𝜌𝑍13 − √(1 − 𝜌𝑍12
2 )(1 − 𝜌𝑍13

2 )    ≤  𝜌𝑍23  ≤ 

≤ 𝜌𝑍12𝜌𝑍13 + √(1 − 𝜌𝑍12
2 )(1 − 𝜌𝑍13

2 )          (31) 

It is the interior of a solid resembling a tetrahedron with 

modified walls (see fig.2).  

For full correlation: 𝜌𝑍12 = 𝜌𝑍13 = 𝜌𝑍23 = 1 the 

variance of output voltage is 

𝑢𝑈𝑜𝑢𝑡
2 = 𝐵11

2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2 + (𝑊𝑈𝑍1
𝑢𝑍1

+ 𝑊𝑈𝑍2
𝑢𝑍2

+

𝑊𝑈𝑍3
𝑢𝑍3

)
2
                      (32) 

 

Fig 2. The area of  three correlation coefficients 

correlated by pairs for det ( R) = 0 

In the case of invert suppling of  twoport,  i.e. 𝐼𝑜𝑢𝑡 < 0, 
there is a possibility to obtain the  minimum of 

uncertainty of  performance function when 

𝑊𝑈𝑍1
𝑢𝑍1

+ 𝑊𝑈𝑍2
𝑢𝑍2

+ 𝑊𝑈𝑍3
𝑢𝑍3

= 0. 

3.3.2  Uncertainties  and correlation in the output 

The formula for uncertainty of current Iout if correlated 

are only impedances, obtained from (28), is: 

𝑢𝐼𝑜𝑢𝑡
2 =

1

𝑍2
2 [𝑢𝑈𝑖𝑛

2 +(𝑍1 + 𝑍2)
2𝑢𝐼𝑖𝑛

2 + 𝐼𝑖𝑛
2 𝑢𝑍1

2 + 𝐼2
2𝑢𝑍2

2 +

+2𝐼𝑖𝑛𝐼2𝜌𝑍12𝑢𝑍1
𝑢𝑍2

]                  (33) 

For total correlation 𝜌𝑍12 = 1, this formula simplify to 

𝑢𝐼𝑜𝑢𝑡
2 =

1

𝑍2
2 [𝑢𝑈𝑖𝑛

2 +(𝑍1 + 𝑍2)
2𝑢𝐼𝑖𝑛

2 (𝐼𝑖𝑛𝑢𝑍1
+ 𝐼2𝑢𝑍2

)2](33a) 

In the general case, the correlation coefficient between 

voltage 𝑈𝑜𝑢𝑡 and current −𝐼𝑜𝑢𝑡 is: 

𝜌𝑜𝑢𝑡 =

−𝐵11𝐵21𝑢𝑈𝑖𝑛
2 −𝐵12𝐵22𝑢𝐼𝑖𝑛

2 +

− 
1

𝑍2
2[

𝐼𝑖𝑛
2 (𝑍2+𝑍3)𝑢𝑍1

2 +𝐼𝑖𝑛𝐼2(𝑍2+2𝑍3)𝜌𝑍12𝑢𝑍1𝑢𝑍2+

+𝐼𝑖𝑛𝐼𝑜𝑢𝑡𝑍2𝜌𝑍13𝑢𝑍1𝑢𝑍3+𝐼𝑜𝑢𝑡𝐼2𝑍2𝜌23𝑢𝑍2𝑢𝑍3+𝐼2
2𝑍3𝑢𝑍2

2 ] 

𝑢𝑈𝑜𝑢𝑡𝑢𝐼𝑜𝑢𝑡

   

𝜌𝑍23  

𝜌𝑍13 
𝜌𝑍12 

𝜌𝑍12 



 (34) 

and for the divider, i.e. when  𝑍3 = 0 

 𝜌𝑜𝑢𝑡 =
−𝑢𝑈𝑖𝑛

2 −𝑍1(𝑍1+𝑍2)𝑢𝐼𝑖𝑛
2 −𝐼𝑖𝑛

2 𝑢𝑍1
2 −𝐼𝑖𝑛𝐼2𝜌𝑍12𝑢𝑍1𝑢𝑍2

𝑍2𝑢𝑈𝑜𝑢𝑡𝑢𝐼𝑜𝑢𝑡

    (35)           

When all correlation are positive: 𝜌𝑍12 = 𝜌𝑍13 = 𝜌𝑍23=1 

and output current is negative  

𝑊𝐼𝑍1
𝑢𝑍1

+ 𝑊𝐼𝑍2
𝑢𝑍2

+ 𝑊𝐼𝑍3
𝑢𝑍3

= 0          (36) 

then the correlation coefficient is: 

𝜌𝑜𝑢𝑡 =
−𝐵11𝐵21𝑢𝑈𝑖𝑛

2 − 𝐵12𝐵22𝑢𝐼𝑖𝑛
2

𝑢𝑈𝑜𝑢𝑡
𝑢𝐼𝑜𝑢𝑡

    (37) 

and 𝜌𝑜𝑢𝑡 is always negative, because for the passive 

twoport of type T is  𝐵11𝐵21, 𝐵12𝐵22 > 0. Then there are 

no errors of processing the output voltage, i.e.:  

𝑢𝑈𝑜𝑢𝑡
2 = 𝐵11

2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2                    (38) 

In the case 𝑢𝑍1
⟶ 0 and the impedance of twoport  𝑍3 =0  

𝑢𝐼𝑜𝑢𝑡
2 = 𝐵21

2 𝑢𝑈𝑖𝑛

2 + 𝐵22
2 𝑢𝐼𝑖𝑛

2                       (39) 

then the negative correlation coefficient between the 

output current and voltage is equal to: 

𝜌𝑜𝑢𝑡 = −
𝐵11𝐵21𝑢𝑈𝑖𝑛

2 + 𝐵12𝐵22𝑢𝐼𝑖𝑛
2

√𝐵11
2 𝑢𝑈𝑖𝑛

2 + 𝐵12
2 𝑢𝐼𝑖𝑛

2 √𝐵21
2 𝑢𝑈𝑖𝑛

2 + 𝐵22
2 𝑢𝐼𝑖𝑛

2

  (40) 

3.4. Numerical example 

Figure 3 shows examples of the dependence of the 

uncertainty of the twoport T output voltage as a function 

of the output current for different values of the correlation 

coefficients 𝜌12 = 𝜌13 = 𝜌23 = 0; 0,1; 0,5; 0,7; 1, Uin=25 
V; and relative uncertainties 𝛿𝑈𝑤𝑒

= 𝛿𝐼𝑤𝑒
= 𝛿𝑍𝑖𝑗

= 0,2%. 

  

Fig. 3. Uncertainty of the twoport output voltage as a 

function of the output current Iout for different values of 

the correlation coefficients ρ =ρ12 =ρ13 =ρ23; Uin = 25 V, 

and relative uncertainties 𝛿𝑈𝑤𝑒
= 𝛿𝐼𝑤𝑒

= 𝛿𝑍𝑖𝑗
= 0,2% 

4. Summary and conclusions  

Formulas summarized in Table 1, extend the method 

of GUM Supplement 2 [1] for determining the uncertainty 

of indirect multi-parameter measurements. The model 

which considers uncertainties and correlations of system 

parameters that implement the multivariable processing 

function, proposed by Z. Warsza, is used. 

As an example of the application of this method in 

indirect 2D measurements of the voltage and current of 

the two-terminal circuit branch, available only through the 

twoport T, is presented. Such measurement occur in the  

identification of voltages and currents of inaccessible 

directly elements forming the electrical systems, and in 

multi-sensor measurements and technical diagnostics. 

Matrix relationships were derived considering the 

uncertainty of processing functions performed by twoport. 

The formulas of increased total uncertainty of the 

estimated voltage and current due to the impedances 

uncertainties of this system are find. It did not exceed the 

sum of uncertainties of input variables and twoport 

impedances.  

In the presented variants of the twoport, the 

uncertainties at the output also depend on the value and 

sign of the correlation coefficients of the input quantities 

and circuit parameters, as well as the current at the output 

of this circuit. The possibilities of minimizing these 

uncertainties were also discussed. 

The proposed method can be usefully used both for 

the evaluation of indirect multi-parameter measurements 

made with a set of instruments, as well as for the 

assessment of the accuracy of measuring instruments and 

systems with an integrated measurement system for 

multivariable measurements. This method may be also the 

basis for development a new extended version of the 

Guide GUM Supplement 2 or included in its new version 

GUM2. 

This method will allow the assessment of the accuracy 

of multivariable instrumental measuring systems by 

means of uncertainties. Therefore, other interesting partial 

methods, e.g. given in [5], [9, 10], are not discussed here. 

 

It is possible to analyze by this method the 

determination of uncertainty of several other multi-

parameter measurement systems, e.g. AC networks as in 

[2], [3], [5], [7], power component measurements in 

three-phase networks with different waveforms, and then 

to examine the statistical properties of multi-variable 

systems with non-Gaussian probability distributions and 

various processing functions of measurands. 
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