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1. Introduction
Several experts claim that the SI measurement unit 

mole and the quantity ‘amount of substance’, n(X), 
are continuous concepts, inappropriate for substances 
that, according to the atomic theory, are clearly made 
up of a collection of discrete entities, [1, 2] where the 
critical comment is that every “phenomenon, body, 
or substance” [3] is a collection of discrete entities.

The present VIM3 [3] defines a “quantity” as  
a “property of a phenomenon, body, or substance”, 
leaving the characteristics of the term ‘quantity’ related 
to the chosen characteristics of the relevant properties. 
Therefore, the question is: does necessarily a quan-
tity also necessarily refer to the possible granularity of  
a phenomenon, body, or substance?

Take, for example, for the quantity “mass”: does 
one always to take whether or not a phenomenon, 
body, or substance is subdivided into discrete entities? 
It depends of the frame of the analysis and also on 
the chosen measurement unit. If the appropriate unit 
is the atomic mass, one should count the number of 
atoms in the amount being measured, like, indirectly, 
is done for a silicon sphere of the Avogadro Project, 
[4] or when measuring a very small amount of mass. 
However, the appropriate unit is most often determined 
by the used measuring apparatus: if a two-pan scale 

is used, one compares two macroscopic entities, and 
in that case the composition of the body or substance 
does not need to be taken into consideration, at least 
only at the level of a collection of discrete entities.

In other cases, like temperature, the macroscopic 
properties are related to the statistical properties of 
granular substances like atoms and molecules, are, so 
the present meaning of ‘temperature’ is generally lost 
at the numerical level (numerosity) where the entity’s 
statistics become meaningless, at least from an experi-
mental viewpoint. In another case, radiation, the cur-
rent model units are quanta, leading to the develop-
ment of quantum physics.

2. Distinction between continuous and discrete in  
physics

The distinction between continuous (treated by dif-
ferential maths) and discrete (treated by counts) is real: 
“everyone is used to consider a quantity as a continuous 
function, so the perception of the ‘granular’ nature of 
the substance, relevant when only its colligative proper-
ties are considered, is lost”, … “in other fields of science 
the granular nature is recognised but taken into account 
only from a statistical viewpoint”. [5] This could be the 
case when, in fact, not a count is performed, but the 
measurement of a related quantity – i.e., the mass, with 
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an hypothetical resolution, say, d  =  30×1015 m0 , where m0 
is the mass of one entity. Instead, this is not appropriate 
in the case of the amount of substance, since the only 
property considered for the entities is their ‘numerosity’, 
not their kind.

(Note: However, in the paper a clear distinction should be 
taken into account between the uses in physics which require con-
tinuous functions and real numbers but no differential math – e.g. 
the gas law and Coulomb’s law – and those that also require dif-
ferential math – e.g. Newton’s second law of motion.)

Some relevance has also the fact that in English 
the term “quantity” is used for a property of a phe-
nomenon, body, or substance that has a “magnitude”, 
and the term “amount” is used for a portion of that 
phenomenon, body, or substance. 

In another group of languages, including French 
(and Italian), the same term is instead “grandeur” 
(“grandezza”) for a “propriété … que l’on peut exprimer 
quantitativement” for the first, and “quantité” (“quan-
tità”) for the second. “Magnitude” is “ampleur” but 
also “(ordre de) grandeur” for order of magnitude. For 
this reason, in these languages the expression “amount 
of substance”, becoming “quantité de substance” (quan-
tità di sostanza), does not raise the irritation that it ap-
parently does in the English world [6, 7] – apart the 
limitation inherent in the term “substance”. 

In the above respect, can in English “amount” 
be considered a “quantity”? i.e., a property of a phe-
nomenon, body, or substance? Maybe not: ‘amount’ 
is a property of something only in the sense that, and 
if, the ‘thing’ can be partitioned, so that an amount 
can be separated from the rest: this is the property; or, 
maybe, only when considering the aggregate ‘thing’ as 
a mass of substance in the everyday meaning. 

The magnitude of the chosen amount can, in it-
self, not be a property of the ‘thing’ in itself. Should 
this be true, “amount of substance” is not a quan-
tity. The chemist determines the amount needed for 
a specific process through other properties, like mass. 
Then, through the Avogadro number, the chemist can 
compute how many entities are approximately involved 
in the process, and compute its evolution and outcome. 
However, that seems to be difficult or even impossible 
for something that cannot be partitioned, for example 
a “phenomenon” like, e.g., a field: what is the amount 
of a field? Or of vacuum? In the opposite situation 
of “quantum physics”, can one consider a mass as 
continuous or discrete? [8]

3. Tools for processing discreteness
Discreteness suffers from a lack of efficient tools 

for treating complex cases. Though it is the original 
foundation of the concept of number as an integer, their 
ratios initially in common use as fractions (a popu-
lar tool in several old civilisations – from Greece to 
China), soon lead in mathematics to a different tool, 
the concept of ‘real number’, considered to be “exact” 
by having infinite decimal digits. 

(Note: Mathematics, differently from experimental physics,  
admits – even requires – exactness. Pythagoras based his authority, also 
political, on that, and when it was demonstrated that the diagonal of  
a rectangular triangle cannot be expressed by any finite method 
(discovery of irrational numbers), there was in Agrigento popular 
violence and killing of pythagoreans, and Pythagoras had to hide 
himself! Today, the dispute among mathematicians about the concept 
of infinity is still open. [9]).

The infinitesimal calculus was developed since the 
Greek times, but was consolidated only since the XVII 
Century thanks to Newton and Leibniz [10], and con-
tinuous functions with it.

For discrete counting (not making use of real 
numbers), some development can be found in recent 
times, especially concerning the simplest, the binary 
one (or ternary one now in today quantum physics, 
also involving time [11]). Some additional fields are 
informatics and nominal scales, or space.

Actually, one striking example of granularity is 
available long since, that of the fractals. Their cohe-
rent patterns are obtained only by sparse points, de-
feating any coherence among them (be an infinite set 
of unconnected points, like, e.g., a Cantor dust, re-
ferring to a space of fractional dimensions), by means 
of a deterministic equation whose computation leads 
to chaos when plugging hordes of random numbers 
in it [12–14].

It is meaningless, in principle, to talk about dis-
crete ‘functions’ because discreteness seems to lack  
a basic properties that a function can be considered to 
need, autocorrelation underlying its trend, at least as 
long the differentiability property stands. 

(Note: However, also a discrete mathematics exists, and the 
above definition of continuous functions also applies in mathematics 
to a special kind of set, that is fully connected but discontinuous 
everywhere, like the Weierstrass function. It also exists in 3D and 
it has also been used for the treatment of properties of molecular 
ensembles, a granular type. [15, 16]).

There is an urgent need for more mathematics of 
the discrete to develop. Even the recent quantum model 
of physics is still formalised and treated by means of 
continuous mathematical functions, a patent contradic-
tion not really resolved by the mathematical concept of 
“states” and the lack of the need of the physical con-
cept of “space” – a concept that looks useless also in 
counting, contrarily to moving. The massive use of the 
concept of “informatics” in quantum physics, limited 
to the binary – or tri-logic – frame, does not seem to 
be able to surrogate a true mathematics of the discrete.

4. Infinity in a discrete world and exactness
Discreteness also puts a question mark on the 

possibility of the assumption of an infinite number of 
entities, material or mathematical, e.g. on the ‘rea-
lity of real numbers’, a concept still popular also in 
quantum physics. This would also require a change in 
the concept of exactness, and probably a limit on the 
‘maximum possible exactness’ [17, 18].
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(Note: There is a singular case about discreteness. In com-
merce, a popular “para-drug” (homeopathic) exists that is stated 
to be obtained by a specific method of many subsequent dilutions 
of a substance of given concentration of the active molecule, with 
so many dilutions indicated that it is simple to compute that not  
a single molecule of that substance can exist in the final “solu-
tion” sold!)

The latter argument leads to the domain of 
metro-logy, where exactness is a basic issue. In 2007 
R. Fox and T. Hill published a short article [19] 
about the mole where an “exact” value for the Avo-
gadro number was indicated – an integer number, 
which differs from the Avogadro constant requiring 
stipulation in the definition of the mole, but whose 
value is considered to be anyway a  real number:  
(NA)FH =  602 214 141 070 409 084 099 072. 

(Note: In experimental science, only a stipulated value can be 
exact. In a computation of the number of entities like in this case, 
on the contrary, where the result is an integer number, it can be 
considered exact under the specified assumptions of the count).

This was not the first time to happen. In 
1999 Williams [20] had introduced a different 
“exact” numerical value, a “binary mole”, as  
279 = 604 462 909 107 318 607 353 088, which is seemin- 
gly found useful in nuclear physics because it differs 
only by 0.37 % from the experimental value. A third 
attempt, based on the number of entities in a cube of 
some 84 millions of entities per side lead in 2010 to 
the number 602 214 162 464 240 016 093 369 [21].

This prompted me to look, with similar approa-
ches, at the possible intrinsic limits to the exactness of 
a granular unit mass, here reported in the Appendix.

5. A final remark
A continuous quantity can be quantitatively ex-

pressed by a numerical value depending on the chosen 
measurement unit (note, also in the case of a theoreti-
cal reasoning): the resulting function is a property of 
such a quantity. 

(Note: The ‘shape’ of the continuous function does not de-
pend, instead, on the chosen unit. In a nominal scale too numerical 
values can be attributed to each level (or groups of them), and also 
in this case a “graphical shape” of the trend can be obtained, as 
points, “stairs” or by means of an continuous interpolating function).

For a discrete function, on the other hand, a  no-
minal scale can be constructed, and a discrete function 
requires a ratio scale with only integers, each item be 
named one of its levels. In a generic sense, the “value” 
and the “level” can be taken as an indication of – be 
called – the “magnitude” of the quantity, continuous 
and discrete respectively. The use of this term allows 
a qualitative comparison of quantity conditions, and 
is useful also in measurement science because it does 
not need further specifications.

(Note: The term “magnitude” has been cancelled in the most 
recent draft of VIM4 [22], now under examination of the Inter-
national Scientific Community and of Organisations like ISO. See 
author’s opinion above. The change in the VIM4 draft comes from 

the proposed new formulation of the term “quantity”: “property 
whose instances can be compared by ratio or only by order”, where 
the addition to the VIM4 of also the nominal quantity, requires the 
addition in this definition of a non-quantitative result of measure-
ment, an “order” in the nominal scale).

The revised SI eventually based the unit of mass 
on the Planck constant h, measured with two basic 
methods and the results from the Kibble balance and 
the Avogadro Project. However, studies are now con-
tinuing toward obtaining the mass amount also (and 
possible only, in future) directly via counting of 28Si 
atoms [23–25].

Finally, this paper does not pretend to indicate 
ways to perform advancements in the treatment of dis-
creteness and counts, its only intention is to contribute 
to foster studies in this field. 

Appendix
The Fox and Hill exercise considers the entities 

ideally packed into a cube of some 84 millions of enti-
ties per side, to reproduce a numerical value metrologi-
cally compatible with the experimental ones. This is 
shedding light on some interesting aspects of the issue.

First, it recalls us that the Avogadro number is 
an integer one property (and so is the Avogadro con-
stant). This is not evident from the normal ‘scientific 
notation’ used for representing real numbers [26]. The 
number in question comes, in its essence, from coun-
ting entities, no fraction of any of them being mea-
ningful. Therefore, it can only increase by one entity at 
a time, in discrete steps of one unit on the real-number 
continuous line.

Secondly, the Fox and Hill exercise is invariant 
with respect to the shape and size of each entity, to the 
(varied) distance in space between them and to their 
distribution (homogeneity) in the 3 dimensions, except 
for a single condition: in the Euclidean 3-dimensional 
space where the (non-interacting) entities are deployed, 
one should count the same number of them for each 
of the 3 Cartesian axes.

Third, the immense number of entities indicated 
by NA has to be considered deployed in the above 
space (except in the case of a macroscopically-extended 
monolayer of them), and thus be as small as the cubic 
root of 10 24, i.e. 10 8, for each dimension of it, a  num-
ber much closer to the precision obtainable today. 

Fourth, for its validity, the present mole defini-
tion does not explicitly place for its validity a lower 
limiting value for the number of entities (as implicitly 
happens, e.g. for temperature, where the statistics of 
kinetic temperature must hold), so that, in principle, 
a  single entity is an amount of substance of 1.66… 
yocto moles – dots indicating a rational number.

I see consequences from some of these facts.
While the cube representation is restrictive, in the 

vast majority of the cases where the entities are indu-
bitably scattered in a tridimensional space, the simple 
requirement of an equal number of entities per each 
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of the three dimensions of space is quite more general. 
For example, in the case of fluids I do not see specific 
reasons why this condition should not hold.

However, numbers I, with I = I1, …, IN that are 
consecutive integers, will produce a sequence of I 3 that 
are discontinuous values equally spaced. Therefore, ex-
perimental values expressed as real numbers cannot 
exactly match this sequence, but only fall in between 
two consecutive proxies.

Let us consider the most precise present value ob-
tained from measurements on the monoisotopic silicon in 
the Avogadro Project, NA = 6.022  140  76(12)×1023 mol–1 
[27]. Thus u  =  1.2×10–30 mol–1, or 2.0×10–8 relative. 
(The last (2017) CODATA recommended value had a 
relative uncertainty of 1×10–8, while the 2018 new-SI 
stipulated value (6.022 140 76×1023 mol–1) has an im-
plicit relative uncertainty corresponding to 0.17×10–8, 
better than obtained by the atom count!)

In the (adjourned) case of Fox and Hill, [22]  
I = 84 446 884 to 84 446 886 entities per perfect-cube 
dimension is the range of integers generating values of I 3 
that correspond to the above observed NA best value, 
[27] and the spacing is 0.000 000 213 938 29(1)×1023 

(for a computer providing a 15 digits accuracy). Let 
us call it the unitary spacing (US ). This spacing value 
is the change in the value of (NA)FH for 1 atom diffe-
rence per dimension.

The above fact means, in metrology, that the un-
certainty of any assigned numerical value representing 
NA could not be lower than the US, so the latter will 
be the minimum uncertainty (US = umin ) to be asso-
ciate with any measured amount of substance.

Then, let us now compare the US for (NA)FH with 
the current uncertainty associated to experimental nu-
merical values of NA. 

By using the US, one finds (NA)FH = 6.022 140 555– 
–6.022 140 983×1023 as the proxies in that experimen-
tal uncertainty interval, for a cube of 84 446 884 to  
84 446 886 entities per dimension, respectively. There 
are approximately 602 214 076 888 919 0×109 entities 
for 84 446 885 entities per dimension, or (NA)FH ≈  
≈ 6.022 140 76(8 88 919)×1023 mol–1. 

(Note: The approximation holds because of the use of a 15-digits 
computer. By using the fourth initial consideration, one might consider 
to obtain the 15-digit result exactly for nanomoles (10–9 mol). In this 
case, one should use a 5-digit number of entities per dimension, e.g. 
84 446: the result is that one gets an exact 15-digits value for the total 
number of entities, but the US is now 1000 times larger, so that one 
is unable to get a sufficient approximation of the measured values of 
NA (the closest proxy being 84 4463 = 602 195 143 548 536). Com-
putations made using up to 100 digits can be found possible in the 
Appendix of [28].)

Therefore, according to this model, the reported 
measurement has an uncertainty range of 1 entity. Notice 
also that the US corresponds to a range (21) while for 
the Avogadro Project experimental value of NA, where 
the indicated experimental uncertainty u is ±12 = (24).

Different entity-packing geometries might possibly 
allow for a higher resolution, but I am unsure that any 
of them could lead to resolutions higher by orders of 
magnitude.

In author’s view this means that, under certain cir-
cumstances ‒ not necessarily applicable to [23] using 
a solid sample – we are looking to be already (but for 
an ideal lattice), and we will soon reach experimentally, 
at a limit resolution for the determination of NA, at 
least unless the above considerations are weighted in 
respect to each specific experimental conditions, and 
their possible influence on the results can be taken in 
due account and circumvented [24].
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Анотація
У 3-му виданні Міжнародного словника з метрології (VIM3) величина визначається як “властивість явища, 

тіла або речовини”, залишаючи характеристики терміну “величина” (англ. “quantity”) пов’язаними із вибраними 
характеристиками відповідних властивостей. Виникає питання: чи повинна властивість також обов’язково мати 
відношення до можливої гранулярності явища, тіла або речовини?

Візьмемо, наприклад, величину “маса”: чи повинна вона завжди враховувати те, чи ділиться явище, тіло або 
речовина на окремі елементи? Це залежить від системи аналізу, а також від вибраної одиниці вимірювання. В інших 
випадках, таких як температура, макроскопічні властивості пов’язані зі статистичними властивостями гранулярних 
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речовин, таких як атоми і молекули, тому нинішнє значення “температури” зазвичай втрачається на числовому 
рівні, де статистика елемента стає беззмістовною принаймні з експериментальної точки зору.

У статті розглядаються відмінності між неперервним та дискретним у фізиці, наводяться розбіжності тлума-
чення терміну “величина” у різних мовах. Висвітлено проблему вибору інструментів для обробки дискретності  
у складних випадках у математиці, квантовій фізиці та метрології.

Досліджено питання нескінченності у дискретному світі та точності. Зокрема, дискретність ставить під сумнів 
можливість допущення нескінченного числа елементів, матеріальних або математичних, наприклад “реальності 
дійсних чисел”, концепції, що досі є популярною у квантовій фізиці. Обґрунтовано необхідність зміни концепції 
точності та можливого обмеження “максимально можливої точності”.

У Додатку розглянуто підходи щодо можливих внутрішніх границь точності гранулярної одиниці маси.

Ключові слова: безперервний; гранулярний; величина (англ. “quantity”); величина (англ. “magnitude”); кванти; 
ціле число; дійсне число; рахунок; функція.
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Аннотация
VIM3 определяет величину как “свойство явления, тела или вещества”, оставляя характеристики термина 

“величина” (англ. “quantity”) связанными с выбранными характеристиками соответствующих свойств. Возникает 
вопрос: должно ли свойство также обязательно иметь отношение к возможной гранулярности явления, тела или 
вещества?

Возьмем, например, величину “масса”: должна ли она всегда учитывать то, делится ли явление, тело или 
вещество на отдельные элементы? Это зависит от системы анализа, а также от выбранной единицы измерения. 
В других случаях, таких как температура, макроскопические свойства связаны со статистическими свойствами 
гранулярных веществ, таких как атомы и молекулы, поэтому нынешнее значение “температуры” обычно теряется 
на числовом уровне, где статистика элемента становится бессмысленной. Еще один случай ‒ квантовая физика. 
В статье показана проблема и возможные решения, находящиеся на стадии разработки.

Ключевые слова: непрерывный; гранулярный; величина (англ. “quantity”); величина (англ. “magnitude”); кванты; 
целое число; вещественное число; счет; функция.
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