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Abstract

The VIM3 defines a quantity as a “property of a phenomenon, body, or substance”, leaving the characteristics of the
term ‘quantity’, related to the chosen characteristics of the relevant properties. The question is: does necessarily a property
also necessarily refer to the possible granularity of a phenomenon, body, or substance?

Take, for example, for the quantity “mass”: it does not always have to take into account whether or not a pheno-
menon, body, or substance is subdivided into discrete entities? It depends of the frame of the analysis and also on the
chosen measurement unit. In other cases, like temperature, the macroscopic properties are related to the statistical proper-
ties of granular substances like atoms and molecules are, so the present meaning of ‘temperature’ is generally lost at the
numerical level where the entity’s statistics become meaningless. Yet another case is quantum physics. The paper illustrates
the issue and possible solutions under development.
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1. Introduction

Several experts claim that the SI measurement unit
mole and the quantity ‘amount of substance’, n(X),
are continuous concepts, inappropriate for substances
that, according to the atomic theory, are clearly made
up of a collection of discrete entities, [1, 2] where the
critical comment is that every “phenomenon, body,
or substance” [3] is a collection of discrete entities.

The present VIM3 [3] defines a “quantity” as
a “property of a phenomenon, body, or substance”,
leaving the characteristics of the term ‘quantity’ related
to the chosen characteristics of the relevant properties.
Therefore, the question is: does necessarily a quan-
tity also necessarily refer to the possible granularity of
a phenomenon, body, or substance?

Take, for example, for the quantity “mass”: does
one always to take whether or not a phenomenon,
body, or substance is subdivided into discrete entities?
It depends of the frame of the analysis and also on
the chosen measurement unit. If the appropriate unit
is the atomic mass, one should count the number of
atoms in the amount being measured, like, indirectly,
is done for a silicon sphere of the Avogadro Project,
[4] or when measuring a very small amount of mass.
However, the appropriate unit is most often determined
by the used measuring apparatus: if a two-pan scale
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is used, one compares two macroscopic entities, and
in that case the composition of the body or substance
does not need to be taken into consideration, at least
only at the level of a collection of discrete entities.

In other cases, like temperature, the macroscopic
properties are related to the statistical properties of
granular substances like atoms and molecules, are, so
the present meaning of ‘temperature’ is generally lost
at the numerical level (numerosity) where the entity’s
statistics become meaningless, at least from an experi-
mental viewpoint. In another case, radiation, the cur-
rent model units are quanta, leading to the develop-
ment of quantum physics.

2. Distinction between continuous and discrete in
physics

The distinction between continuous (treated by dif-
ferential maths) and discrete (treated by counts) is real:
“everyone is used to consider a quantity as a continuous
function, so the perception of the ‘granular’ nature of
the substance, relevant when only its colligative proper-
ties are considered, is lost”, ... “in other fields of science
the granular nature is recognised but taken into account
only from a statistical viewpoint”. [5] This could be the
case when, in fact, not a count is performed, but the
measurement of a related quantity — i.e., the mass, with
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an hypothetical resolution, say, d = 30x10" m,, where m,
is the mass of one entity. Instead, this is not appropriate
in the case of the amount of substance, since the only
property considered for the entities is their ‘numerosity’,
not their kind.

(Note: However, in the paper a clear distinction should be
taken into account between the uses in physics which require con-
tinuous functions and real numbers but no differential math — e.g.
the gas law and Coulomb’s law — and those that also require dif-
ferential math — e.g. Newton’s second law of motion.)

Some relevance has also the fact that in English
the term “quantity” is used for a property of a phe-
nomenon, body, or substance that has a “magnitude”,
and the term “amount” is used for a portion of that
phenomenon, body, or substance.

In another group of languages, including French
(and Italian), the same term is instead “grandeur”
(“grandezza”) for a “propriété ... que 1’on peut exprimer
quantitativement” for the first, and “quantité” (“quan-
tita”) for the second. “Magnitude” is “ampleur” but
also “(ordre de) grandeur” for order of magnitude. For
this reason, in these languages the expression “amount
of substance”, becoming “quantité de substance” (quan-
tita di sostanza), does not raise the irritation that it ap-
parently does in the English world [6, 7] — apart the
limitation inherent in the term “substance”.

In the above respect, can in English “amount”
be considered a “quantity”? i.e., a property of a phe-
nomenon, body, or substance? Maybe not: ‘amount’
is a property of something only in the sense that, and
if, the ‘thing’ can be partitioned, so that an amount
can be separated from the rest. this is the property; or,
maybe, only when considering the aggregate ‘thing’ as
a mass of substance in the everyday meaning.

The magnitude of the chosen amount can, in it-
self, not be a property of the ‘thing’ in itself. Should
this be true, “amount of substance” is not a quan-
tity. The chemist determines the amount needed for
a specific process through other properties, like mass.
Then, through the Avogadro number, the chemist can
compute how many entities are approximately involved
in the process, and compute its evolution and outcome.
However, that seems to be difficult or even impossible
for something that cannot be partitioned, for example
a “phenomenon” like, e.g., a field: what is the amount
of a field? Or of vacuum? In the opposite situation
of “quantum physics”, can one consider a mass as
continuous or discrete? [8]

3. Tools for processing discreteness

Discreteness suffers from a lack of efficient tools
for treating complex cases. Though it is the original
foundation of the concept of number as an integer, their
ratios initially in common use as fractions (a popu-
lar tool in several old civilisations — from Greece to
China), soon lead in mathematics to a different tool,
the concept of ‘real number’, considered to be “exact”
by having infinite decimal digits.

(Note: Mathematics, differently from experimental physics,
admits — even requires — exactness. Pythagoras based his authority, also
political, on that, and when it was demonstrated that the diagonal of
a rectangular triangle cannot be expressed by any finite method
(discovery of irrational numbers), there was in Agrigento popular
violence and killing of pythagoreans, and Pythagoras had to hide
himself! Today, the dispute among mathematicians about the concept
of infinity is still open. [9]).

The infinitesimal calculus was developed since the
Greek times, but was consolidated only since the XVII
Century thanks to Newton and Leibniz [10], and con-
tinuous functions with it.

For discrete counting (not making use of real
numbers), some development can be found in recent
times, especially concerning the simplest, the binary
one (or ternary one now in today quantum physics,
also involving time [11]). Some additional fields are
informatics and nominal scales, or space.

Actually, one striking example of granularity is
available long since, that of the fractals. Their cohe-
rent patterns are obtained only by sparse points, de-
feating any coherence among them (be an infinite set
of unconnected points, like, e.g., a Cantor dust, re-
ferring to a space of fractional dimensions), by means
of a deterministic equation whose computation leads
to chaos when plugging hordes of random numbers
in it [12—14].

It is meaningless, in principle, to talk about dis-
crete ‘functions’ because discreteness seems to lack
a basic properties that a function can be considered to
need, autocorrelation underlying its trend, at least as
long the differentiability property stands.

(Note: However, also a discrete mathematics exists, and the
above definition of continuous functions also applies in mathematics
to a special kind of set, that is fully connected but discontinuous
everywhere, like the Weierstrass function. It also exists in 3D and
it has also been used for the treatment of properties of molecular
ensembles, a granular type. [15, 16]).

There is an urgent need for more mathematics of
the discrete to develop. Even the recent quantum model
of physics is still formalised and treated by means of
continuous mathematical functions, a patent contradic-
tion not really resolved by the mathematical concept of
“states” and the lack of the need of the physical con-
cept of “space” — a concept that looks useless also in
counting, contrarily to moving. The massive use of the
concept of “informatics” in quantum physics, limited
to the binary — or tri-logic — frame, does not seem to
be able to surrogate a true mathematics of the discrete.

4. Infinity in a discrete world and exactness

Discreteness also puts a question mark on the
possibility of the assumption of an infinite number of
entities, material or mathematical, e.g. on the ‘rea-
lity of real numbers’, a concept still popular also in
quantum physics. This would also require a change in
the concept of exactness, and probably a limit on the
‘maximum possible exactness’ [17, 18].
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(Note: There is a singular case about discreteness. In com-
merce, a popular “para-drug” (homeopathic) exists that is stated
to be obtained by a specific method of many subsequent dilutions
of a substance of given concentration of the active molecule, with
so many dilutions indicated that it is simple to compute that not
a single molecule of that substance can exist in the final “solu-
tion” sold!)

The latter argument leads to the domain of
metro-logy, where exactness is a basic issue. In 2007
R. Fox and T. Hill published a short article [19]
about the mole where an “exact” value for the Avo-
gadro number was indicated — an infeger number,
which differs from the Avogadro constant requiring
stipulation in the definition of the mole, but whose
value is considered to be anyway areal number:
(N = 602 214 141 070 409 084 099 072.

(Note: In experimental science, only a stipulated value can be
exact. In a computation of the number of entities like in this case,
on the contrary, where the result is an infeger number, it can be
considered exact under the specified assumptions of the count).

This was not the first time to happen. In
1999 Williams [20] had introduced a different
“exact” numerical value, a “binary mole”, as
27 =604 462 909 107 318 607 353 088, which is seemin-
gly found useful in nuclear physics because it differs
only by 0.37 % from the experimental value. A third
attempt, based on the number of entities in a cube of
some 84 millions of entities per side lead in 2010 to
the number 602 214 162 464 240 016 093 369 [21].

This prompted me to look, with similar approa-
ches, at the possible intrinsic limits to the exactness of
a granular unit mass, here reported in the Appendix.

5. A final remark

A continuous quantity can be quantitatively ex-
pressed by a numerical value depending on the chosen
measurement unit (note, also in the case of a theoreti-
cal reasoning): the resulting function is a property of
such a quantity.

(Note: The ‘shape’ of the continuous function does not de-
pend, instead, on the chosen unit. In a nominal scale too numerical
values can be attributed to each level (or groups of them), and also
in this case a “graphical shape” of the trend can be obtained, as
points, “stairs” or by means of an continuous interpolating function).

For a discrete function, on the other hand, a no-
minal scale can be constructed, and a discrete function
requires a ratio scale with only integers, each item be
named one of its levels. In a generic sense, the “value”
and the “level” can be taken as an indication of — be
called — the “magnitude” of the quantity, continuous
and discrete respectively. The use of this term allows
a qualitative comparison of quantity conditions, and
is useful also in measurement science because it does
not need further specifications.

(Note: The term “magnitude” has been cancelled in the most
recent draft of VIM4 [22], now under examination of the Inter-
national Scientific Community and of Organisations like ISO. See

author’s opinion above. The change in the VIM4 draft comes from

”.

the proposed new formulation of the term “quantity”: “property
whose instances can be compared by ratio or only by order”, where
the addition to the VIM4 of also the nominal quantity, requires the
addition in this definition of a non-quantitative result of measure-
ment, an “order” in the nominal scale).

The revised SI eventually based the unit of mass
on the Planck constant s, measured with two basic
methods and the results from the Kibble balance and
the Avogadro Project. However, studies are now con-
tinuing toward obtaining the mass amount also (and
possible only, in future) directly via counting of Si
atoms [23—25].

Finally, this paper does not pretend to indicate
ways to perform advancements in the treatment of dis-
creteness and counts, its only intention is to contribute
to foster studies in this field.

Appendix

The Fox and Hill exercise considers the entities
ideally packed into a cube of some 84 millions of enti-
ties per side, to reproduce a numerical value metrologi-
cally compatible with the experimental ones. This is
shedding light on some interesting aspects of the issue.

First, it recalls us that the Avogadro number is
an integer one property (and so is the Avogadro con-
stant). This is not evident from the normal ‘scientific
notation’ used for representing real numbers [26]. The
number in question comes, in its essence, from coun-
ting entities, no fraction of any of them being mea-
ningful. Therefore, it can only increase by one entity at
a time, in discrete steps of one unit on the real-number
continuous line.

Secondly, the Fox and Hill exercise is invariant
with respect to the shape and size of each entity, to the
(varied) distance in space between them and to their
distribution (homogeneity) in the 3 dimensions, except
for a single condition: in the Euclidean 3-dimensional
space where the (non-interacting) entities are deployed,
one should count the same number of them for each
of the 3 Cartesian axes.

Third, the immense number of entities indicated
by N, has to be considered deployed in the above
space (except in the case of a macroscopically-extended
monolayer of them), and thus be as small as the cubic
root of 10, i.e. 103, for each dimension of it, a num-
ber much closer to the precision obtainable today.

Fourth, for its validity, the present mole defini-
tion does not explicitly place for its validity a lower
limiting value for the number of entities (as implicitly
happens, e.g. for temperature, where the statistics of
kinetic temperature must hold), so that, in principle,
asingle entity is an amount of substance of 1.66...
yocto moles — dots indicating a rational number.

I see consequences from some of these facts.

While the cube representation is restrictive, in the
vast majority of the cases where the entities are indu-
bitably scattered in a tridimensional space, the simple
requirement of an equal number of entities per each
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of the three dimensions of space is quite more general.
For example, in the case of fluids I do not see specific
reasons why this condition should not hold.

However, numbers /, with I = 1, ..., I that are
consecutive integers, will produce a sequence of /3 that
are discontinuous values equally spaced. Therefore, ex-
perimental values expressed as real numbers cannot
exactly match this sequence, but only fall in between
two consecutive proxies.

Let us consider the most precise present value ob-
tained from measurements on the monoisotopic silicon in
the Avogadro Project, N, = 6.022 140 76(12)*10* mol™'
[27]. Thus u = 1.2X107* mol~', or 2.0x1073 relative.
(The last (2017) CODATA recommended value had a
relative uncertainty of 1x10-%, while the 2018 new-SI
stipulated value (6.022 140 76x10% mol~') has an im-
plicit relative uncertainty corresponding to 0.17X10-%,
better than obtained by the atom count!)

In the (adjourned) case of Fox and Hill, [22]
I = 84 446 884 to 84 446 886 entities per perfect-cube
dimension is the range of integers generating values of /3
that correspond to the above observed N, best value,
[27] and the spacing is 0.000 000 213 938 29(1)*x10%
(for a computer providing a 15 digits accuracy). Let
us call it the unitary spacing (US). This spacing value
is the change in the value of (N,)., for 1 atom diffe-
rence per dimension.

The above fact means, in metrology, that the un-
certainty of any assigned numerical value representing
N, could not be lower than the US, so the latter will
be the minimum uncertainty (US = u__ ) to be asso-
ciate with any measured amount of substance.

Then, let us now compare the US for (N,),,, with
the current uncertainty associated to experimental nu-
merical values of N,.

By using the US, one finds (N,).,,=6.022140 55—
—6.022 140 98,x10* as the proxies in that experimen-
tal uncertainty interval, for a cube of 84 446 884 to
84 446 886 entities per dimension, respectively. There
are approximately 602 214 076 888 919 0x10° entities
for 84 446 885 entities per dimension, or (N,).,~
~ 6.022 140 76(8 88 919)x10* mol".

(Note: The approximation holds because of the use of a 15-digits
computer. By using the fourth initial consideration, one might consider
to obtain the 15-digit result exactly for nanomoles (10~° mol). In this
case, one should use a 5-digit number of entities per dimension, e.g.
84 446: the result is that one gets an exact 15-digits value for the total
number of entities, but the US is now 1000 times larger, so that one
is unable to get a sufficient approximation of the measured values of
N, (the closest proxy being 84 446° = 602 195 143 548 536). Com-
putations made using up to 100 digits can be found possible in the
Appendix of [28].)

Therefore, according to this model, the reported
measurement has an uncertainty range of 1 entity. Notice
also that the US corresponds to a range (21) while for
the Avogadro Project experimental value of N,, where
the indicated experimental uncertainty u is +12 = (24).

Different entity-packing geometries might possibly
allow for a higher resolution, but I am unsure that any
of them could lead to resolutions higher by orders of
magnitude.

In author’s view this means that, under certain cir-
cumstances — not necessarily applicable to [23] using
a solid sample — we are looking to be already (but for
an ideal lattice), and we will soon reach experimentally,
at a limit resolution for the determination of N,, at
least unless the above considerations are weighted in
respect to each specific experimental conditions, and
their possible influence on the results can be taken in
due account and circumvented [24].

IIpo HenmepepBHICTh TAa JUCKPETHICTh BEJIHYMH:
NpUKJIAIM 3 (PI3UKM Ta METPOJIOril
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AHoTanisa

Y 3-my BumanHi MixHapoaHoro cioBHuka 3 MerpoJorii (VIM3) BenuunHa BU3HAYa€eThCS K “BIACTUBICTh SIBULIA,
Tila a00 pevyoBMHU”, 3AJMIIAIOYM XapaKTEPUCTUKU TepMiHy “BenumuuHa” (aHMI. “quantity”) moB’s3aHMMU i3 BUOpaHUMH
XapaKTepUCTUKAMU BIilITOBITHUX BJIACTMBOCTell. BUMHWKae TUTaHHS: YW ITOBUHHA BJIACTUBICTh TaKOX OOOB’SI3KOBO MaTH
BiIHOIIIEHHSI OO MOXJIMBOI TPaHyJISIDHOCTI sSIBUILA, TiJla a00 pedyOBUHU?

Bi3zbmemo, Hampukian, BeIMUMHY “Maca”: YA MOBUHHA BOHA 3aBXAW BPAaxOBYBaTH TE€, UM AUIATHCA SBUILE, TUIO abo
peyoBrHa Ha okpeMmi enemeHTu? Lle 3a71eXuUTh Bil CUCTEMU aHalli3y, a TAKOX Bil BUOpaHOI OMMHUII BUMiptoBaHHS. B iHIINMX
BUTIAIKAX, TAKUX SIK TeMIiepaTypa, MaKpOCKOITIYHi BIACTUBOCTI TMOB’sI3aHi 3i CTATUCTUYHUMHU BJIACTUBOCTSIMU TPAHYJISIPHUX
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pEYOBUH, TaKMX SIK aTOMU i MOJIEKYJIM, TOMY HUHIIIHE 3HAUEHHST “TeMIiepatypu” 3a3BUYail BTPAYa€ThCS HA YMUCIOBOMY
PiBHi, ¢ CTaTUCTUKA eJIeMEeHTa CTa€ 0e33MiCTOBHOIO MPUHANMHI 3 €KCIEPUMEHTAIbHOI TOUKU 30pY.

Y crarTi po3rIsmamTbes BiIMIHHOCTI MiXK HENEepepBHUM Ta AMCKPETHMM Y (bi3ulli, HABOASITHCS PO30iKHOCTI TiymMa-
YEHHsI TepMiHy “BeJMuMHA” y Pi3HMX MoBaX. BUCBiTIeHO MmpoOsiieMy BUOOPY iHCTPYMEHTIB JUII OOPOOKMU IUCKPETHOCTI
y CKJIAAHUX BUIAAKAX Y MaTeMaTMlli, KBAaHTOBiil (Di3Mlli Ta METPOJIOTii.

JlocnimkeHo MUTaHHS HECKIHYEHHOCTI Y IMCKPETHOMY CBIiTi Ta TOYHOCTI. 30KpeMa, MUCKPETHICTb CTABUTH IiJ CYMHIB
MOXJIMBICTh JOITYIIEHHSI HECKiHYEHHOro 4Mcja eJIEMEHTIB, MaTepiaibHUX a00 MaTeMaTU4YHUX, HaMpUKIaa “peasbHOCTI
MIMCHUX YMces”, KOHUEILii, 1110 J0Ci € MOMYJsSPHOI0 y KBaHTOBI (i3uili. OGrpyHTOBAHO HEOOXiMHICTb 3MiHM KOHUEILIil
TOYHOCTi Ta MOXJIMBOTO OOMEXEHHS “MaKCUMaJbHO MOXJIMBOI TOYHOCTI”.

Y Jlonatky poO3TJIsSIHYTO MiAXOAM IOJ0 MOXJIMBUX BHYTPIILIHIX TPAHUIb TOYHOCTI I'paHyJISpPHOI OJMHUILI MacH.

Kumouosi ciioBa: GesriepepBHUIL; TpaHYISIPHUI; BeTWMYMHA (aHDI. “quantity”); BenwunHa (aHMI. “magnitude”); KBaHTH;
1iJle Yucao; AiiCHe YUCiI0; paXyHOK; (OYyHKILis.

O HenmpepbIBHOCTH M JTMCKPETHOCTH BEJMYHH:
npuMepbl U3 (GU3UKM M METPOJIOTHHU

®. [NaBese

HauyuoHarnbHbIl uHcmumym memporoaudeckux uccredosaHuli (INRIM), Strada delle Cacce, 91, 10135, TypuH, Vimanus
froavese@gmail.com

AHHOTAIMSA

VIM3 ompezaenseT BeIWYMHY KaK “CBOMCTBO SIBJICHMS, Tejla WJIM BeLIeCTBa”, OCTABJISAS XapaKTEPUCTUKU TepMUHA
“BenuurHa” (aHMI. “quantity”) CBSI3aHHBIMHU C BBIOpAHHBIMHU XapaKTepHUCTUKAMM COOTBETCTBYIOIIMX CBOMCTB. BozHuKaeT
BOIIPOC: JTOJDKHO JIM CBOMCTBO TakKKe 00S3aTeIbHO MMETh OTHOLIECHME K BO3MOXKHOM TPaHYISIPHOCTHU SIBIICHUS, Teja WIN
BelecTna’?

Bo3bMeM, HampuMep, BeIMYMHY “Macca”: JOJDKHA JIM OHA BCETAa YYUTBHIBATh TO, NEIUTCS JIU SBJICHUE, TEJIO WA
BEILIECTBO Ha OTHEJIbHbIE 3JIeMEHThI? DTO 3aBUCUT OT CUCTEMbl aHAJIM3a, a TakKe OT BbIOPAHHON €IMHMUIIBI U3MEpEHUs.
B npyrux ciydasx, TakKuxX KakK TeMIeparypa, MaKpOCKOIIMYECKUE CBOMCTBA CBSI3aHBLI CO CTATUCTUYECKUMM CBOMCTBAMU
IPaHYJISIPHBIX BEILECTB, TAKMX KaK aTOMBI M MOJIEKYJIBI, TIO3TOMY HBIHEIHee 3HauYeHHe “TeMrepaTypbl” OOBIYHO TepsieTCs
Ha YKCJIOBOM YPOBHE, I[le CTATUCTHKA 3JIEMEHTA CTAHOBUTCS OeccMbIcaeHHOM. Ele omuH ciydait — KBaHTOBas (hMU3UKa.
B cratbe mokasaHa mpobjieMa M BO3MOXHBIE PEIIeHUsI, HAXOMSIIMEeCsT Ha CTaauK pa3paboTKU.

KioueBble cioBa: HeNpepbIBHBIN; IpaHY/ISIpHbBIN; BeuunHa (aHIJI. “quantity”); BeauurHa (aHra. “magnitude”); KBaHTbI;
1IeJI0e YMCJI0; BEIECTBEHHOE YHMCII0; CYET; (PYHKIIMS.
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