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Abstract

In the Cochrane Database of Systematic Reviews (CDSR) 75% of reported meta-analyses contain five or fewer studies.
For a small dataset a reasonable goodness-of-fit test on a statistical model cannot be performed since either it requires a
large sample size for the validity of asymptotic approximation or it might be not powerful enough to detect a deviation from
the target model. Random effects model under the assumption of normality is commonly used in many fields of science.
It also appears to be a classical approach for data reduction in interlaboratory studies in metrology and in meta-analysis
in medicine. However, the assumption of normality might not be fulfilled in many practical applications. If a data set is
small, then no statistical test on distribution will perform well. The intrinsic Bayes factor is used for selecting an appropriate
probability model among several competitors, which not necessarily have to be nested. We apply the proposed methodology

to the measurement results used to determine the Newtonian constant of gravitation and the Planck constant.
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1. Introduction

Random effects model is an established tool
to perform the interlaboratory comparison study in
metrology [1] and meta-analysis in medicine [2, 3].
It is also widely used to determine the values of the
physical constants [4]. The assumption of normality is
imposed in many applications of the random effects
model without verifying its validity. While assuming
normality might be appropriate for some datasets,
it might deviate considerably from reality in other
situations. The impact of the distributional assumption
used in the random effects model was studied in
two empirical illustrations in [5], which showed that
the resulting values of the overall mean and of the
between-study variance might be strongly influenced
by the assumed distribution.

Most of meta-analyses and interlaboratory
comparison studies are based on data that consist of
five or fewer observations [6]. As a result, a goodness-
of-fit test cannot be carried out, since it is asymptotic in
nature, or it is not powerful enough to detect deviations
from the distributional model specified under the
null hypothesis. For this reason, we opt for Bayesian
approach. The parameters of the model are endowed
with the Berger and Bernardo reference prior, which is
a non-informative prior. Since a non-informative prior
is usually improper, the conversional Bayes model
selection based on the Bayes factor cannot be used.
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We employ the intrinsic Bayes factor to select the most
suitable model among several competing models that
do not necessarily have to be nested.

The suggested approach is applied to data consisting
of measurement results used in the determination of
the Newtonian constant of gravitation and the Planck
constant. While the assumption of normality is found
to be appropriate in the case of the Newtonian
constant, the data used in the calculation of the Planck
constant appear to be heavy-tailed and the random
effects model based on t-distribution with three degrees
of freedom provides a better fit to data than the one
based on the assumption of normality.

2. Bayesian model selection based on the intrinsic Bayes
factor

Let x=(x, ,..., x) denote the measurement
results and let U= (ukq)k’qe1 ,,,, , be the covariance
matrix provided together with the measurement results
by participating laboratories. The generalized random
effects model assumes that the density of x is given
by (see [7])

1

p(x|nt)= ——
(det(U+7'T)

where  is the common mean and T is the between-study
standard deviation, also known as the heterogeneity

f ((x—ul)T (U+ rzl)il (x—ul)), (1)
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parameter “dark uncertainty”; 1 denotes the vector
of ones and I is the identity matrix. The function
J; (.) determines the specific class of the random effects
model. If f(u)=(2m)™?exp(-u/2), then (1) is the
normal random effects model, while the 7-distributed
random effects model with d degrees of freedom is
obtained from (1) with

L T((n+d)/2)
flu)=(nd)  ——F—F—
(=) =
Bayes factor is widely used for model selection in
Bayesian statistics. It is defined by

o, (1) -2

m. \ X
i

(+u/d) """ (2)

with

m (x) =0T py (x| o) m; (wr) dudr,

where g (u,7T) stands for a prior assigned to the
parameters of the model M. If BF/.I, (x) >1, then
one concludes that the model M/ is preferable to M,
otherwise one prefers the model M, to MJ

If 7t (u,7) is improper as in the case of the Berger-
Bernardo reference prior whose expressions derived
for the normal random effects model and for the
t-distributed random effects model are given in [7],
then the Bayes factor in (3) cannot be computed since
the marginal distribution of data is improper as well.
As a solution to the problem, the intrinsic Bayes factor
(IBF) is defined in [8]. The idea behind the approach
is to use a part of observations, the so-called training
sample to transform the improper prior to the proper
posterior, which is then used in the computation of
the IBF. The recommendation is to use the smallest
possible number of observations as a training sample,
in order to have more observations to draw a decision
about the preferable model. In the case of the random
effects model, the size of the minimal training sample
is two independently of f.(.) following [4].

Let x, denotes the minimal training sample and
let X, =X—X, denotes the rest of the sample when the
elements x, are excluded. Then the IBF for model Mj
to M, is defined by

m} (X(/) | X/)
ml (XU) | XI)

m (xm B9 ):If [ p (xm \p,r,x/)nl (1] x,)dpdz, (3)

IBF, (x, |x,)= with

where m (u,1jx,) is the posterior for the parameters
of M, given the observations in the minimal training
sample Xx,.

The training sample x, is not uniquely chosen.
When the minimal training sample consists of two
elements as in the case of the random effects model
(1), then one has L=n(n—1)/2 possible choices
of two elements out of n» measurement results. In
such a situation one considers all possible sets of
two measurement results as a training sample, while
the rest of data is used for the model selection. As
aresult, one obtains n(n—1)/2 IBF values which are
aggregated into a single value. Following [9] the next
three aggregation approaches are used:

1) Average logarithmic IBF:
1
aIBFﬂ (x(/) | X/) = ZZ/ log(IBFu (x(/) | X/ ))’

2) Median logarithmic IBF:

miBF, (x“) [ X, ) = median (log([BF”, (x(,) [ X, ))),
3) Empirical probability IBF:

1
epIBEt( X([) ‘ XI) = Izt 1(0,+w) (IOg(IBF}f(X(I)l XI)))’

where 1, () denotes the indicator function of
set (0,+o0). If aIBFﬁ(x(/)|xl)>O, then the model
Mj is preferable to M. Similarly, the inequality
aIBFjl.(x(,)lx,)>O indicates that the model M/ should
be selected, while eplBFﬁ(x(,)|x[)>0.5 means that the
model Mjis better.

Using the IBF and three aggregation methods
we compare the ability of the random effects model
(I) based on the assumption of the z-distribution,
t~distribution, 7 -distribution, and normal distribution
to fit the data used in the determination of the
Newtonian constant of gravitation (Section 3) and the
Planck constant (Section 4).

3. Model specification for measurement results in the
case of the Newtonian constant of gravitation

In this section we apply the Bayes model selection
approach based on the IBF to the measurement results
used in the computation of the Newtonian constant
of gravitation (see, e.g. [9]). Fig. 1 depicts the values
of the logarithmic IBF computed for all possible

Table 1

Average logarithmic IBF, median logarithmic IBF, and empirical probability logarithmic IBF computed for the
measurement results used in determination of the Newtonian constant for gravitation

Models t,tot, Ltot, £, to normal Ltot, £, to normal t,,to normal
aIBF;,i(XU)|XI) -0.0849 -0.1248 -0.1769 -0.0399 -0.092 -0.0521
m]BF/.l_(X(D|x1) -0.0656 -0.0826 -0.0915 -0.0156 -0.031 -0.0174
ep[BF}i(X(l)|xl) 0.175 0.225 0.2083 0.25 0.275 0.275
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Fig. 1. Logarithm of intrinsic Bayes factors for the comparison between the random effects model based on t,-distribution, ¢.-distribution, t, -distribution, and
normal distribution. Data: Measurement results used in the computation of the Newtonian constant for gravitation (see, e.g. [9])

subsets consisting of measurement results used in the
computation of the Newtonian constant of gravitation.
The plots show that the random effects model based
on the normal distribution provides a better fit to
the data than the one based on the assumption of
a t-distribution. Also, a r-distribution with a large
number of degrees of freedom are preferable to the
one with small degrees of freedom.

In Table 1 the aggregated values of the logarithms
of the IBF are presented for the pairwise model
comparisons between the considered t-distributions and
the normal distribution. The results in the table are in
line with the findings of Fig. 1 and they indicate that
the normal random effects model should be chosen.
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Fig. 2. Logarithm of intrinsic Bayes factors for the comparison between the random effects model based on t,-distribution, ¢.-distribution
normal distribution. Data: Measurement results used in the computation of the Planck constant (see, e.g. [10])
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4. Model specification for measurement results in the
case of the Planck constant

Fig. 2 presents the values of the logarithmic IBF
computed for the data used in the determination of
the Planck constant (see, e.g. [10]). All values in
the plots are considerably larger than zero showing
that the assumption of normal distribution is not
recommendable. Furthermore, we observe that the
random effects model based on the #-distribution with
three degrees of freedom should be selected.

The aggregated values of the logarithmic IBF are
provided in Table 2. In the case of the comparison of
any z-distributed random effects model to the normal
one, the computed values are considerably larger than
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Table 2

Average logarithmic IBF, median logarithmic IBF, and empirical probability logarithmic IBF computed for the
measurement results used in determination of the Newtonian constant for gravitation.

Models ttot, ttot, t,to normal ttot, £, to normal t,,to normal
a[BF/'i(X(l)|X1) 0.4269 0.8796 1.5418 0.4527 1.1148 0.6622
mIBF;.l.(X(lJXZ) 0.4169 0.8591 1.5017 0.4397 1.0892 0.656
ep]BF;_l_(x( HIX) 1 1 1 1 1

one. These finding clearly indicate the presence of
heavy tails in the measurement data that cannot be
captured by the normal distribution. Moreover, we
conclude that the random effects model based on the
t,~distribution provides the best fit to the data used in
the computation of the Planck constant.

5. Conclusion

The model choice is a very challenging task
when the sample consists only of several values. It is
remarkable that most of the interlaboratory comparison
studies are performed by using a few measurement
results. A similar situation is also present in medicine
when a meta-analysis is carried out as well as in the

case of the determination of physical constants, like
the Newtonian constant of gravitation and the Planck
constant.

In the paper we apply the Bayesian model selection
approach based on the intrinsic Bayes factor to
compare the ability of the normal distribution and the
t-distribution to fit measurement data. While we find
that the measurement data used in the computation of
the Newtonian constant of gravitation can be modeled
by the normal random effects model, it is not longer
a case with the data used in the determination of the
Planck constant, the random effects model based on
the ¢-distribution with three degrees of freedom should
be used instead.
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AHoTaujis

V KokpaHniBcbkiit 6a3i qanux cucrematuuHux omistiaie (CDSR) 75% HamaHuX MeTa-aHali3iB MiCTSTh IT’SITh a00 MEH-

e AOCHiIKeHb. /151 HeBenTMKOro Habopy AaHUX HEMOXJIMBO BUKOHATH MPUMHSITHUN TECT HAa MPUAATHICTh CTATUCTUYHOL
MOJIENi, OCKUJIbKM a00 BiH BMMAara€ BEJIMKOIro oOCIry BMOIpKM JUISI OOIPYHTOBAHOCTI aCMMIITOTUYHOTO HAOJMXKEeHHS, a0o
BiH MOXe OyTM HEIOCTATHbO MOTYXXHMM ISl BUSIBJICHHSI BiAXWJIEHHS BiJ LIiJIbOBOI Mojesi. Monejib BUMaaKoOBUX e(heKTiB
3a TPUITYIIeHHs po3moniry [ayca 3a3BWdaili BUKOPUCTOBYETHCS y 0araTbox Tamy3siX HaykKu. LIsT Momenb SIBISIETBCS TaKOX
HaOIbII MOLIMPEHOIO ISl aHali3y JaHUX Yy MiXJIa00paTOPHUX 3BipEHHSIX Yy METPOJIOTii Ta /UIsl MeTa-aHali3y B MEIMIIMHI.
OnHak MPUMYIIEHHST HOPMAJIBHOTO PO3MOIiTy MOXe He BUKOHYBAaTHCSI y 0araTboxX MPaKTUYHUX 3aCTOCYBaHHSX. SKIO Ha-
0ip MaHMX HEBEJIWKWIA, XOAEH CTATUCTUYHMUIA TECT Ha PO3MOAiN He Oyne nmobpe mnparoBaTu. MU 3aCTOCOBYEMO BHYTpIllIHiiA
KoediieHT baiteca, 3anmporoHOBaHUI y BUMAIKy, KOJW KiacuuyHuii KoediuieHT Baiieca He icHye, misi BUOOpPY HaMOiIbIT
MPpUIATHOT WMOBIpHICHOI MoOJeNi cepell KiJIbKOX MoJesieil KOHKYPEHTIB, sIKi He OOOB’SI3KOBO TMOBMHHiI OyTW BKJIAQJIEHUMU.
Mu 3aCTOCOBYEMO 3aIpONOHOBAHY METOMOJIOTIIO [0 pe3y/abTaTiB BUMIpIOBaHb, 110 BUKOPUCTOBYIOTHCS IS BU3HAYCHHS
rpaBirtalliiiHoi cranoi Ta cranoi [lianka.

KinrouoBi cioBa: Moznenb BUNankoBux edeKTiB; f-po3nonii; OailleciBCbKU MeTon BUOOPY MoJeseil; BHYTPIlIHIA Koe-
¢iuient baiieca; rpasitaiiiina crana; crana [linanka.
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AHHOTaIMSA

B KokpanoBckoii 6a3e maHHBIX cuctemarnmdeckux o030poB (CDSR) 75% mpemocTaBieHHBIX MeTa-aHAIM30B COHEP-
XaT TATh WM MeHbIe uccienoBanmii. s HeGobIIoro Habopa JaHHBIX HEBO3MOXKHO BBITIOJHUTH MPUEMIIEMbI TECT Ha
TPUTOAHOCTh CTaTUCTUYECKOUW MOIENU, MOCKOIbKY JMOO OH TpebyeT OOIbIIOro o0bheMa BBIOOPKH 7SI 0OOCHOBAHHOCTH
ACHMITTOTMYECKOTO TPUOIVDKEHUsI, WJIM OH MOXET ObITh HEJIOCTaTOYHO MOIIHBIM [UTSl BBISIBJIEHHMSI OTKJIOHEHHUsI OT IIeJIeBOit
Monenu. Mopenb ciaydailHbIX 2(GEKTOB TpU MPenrnonoXeHnn pacrnpeneneHusi [aycca 0oObIYHO MCTONB3YeTCsl BO MHOTHX
00JacTsIX HayKu. DTa MOIENb SIBISIETCS TakkKe HamOojee pacipoCTpaHEeHHOM IS aHaIM3a JaHHBIX B MeXIab0opaTOPHBIX
CJIMYEHUSIX B METPOJIOTUU W [UISI MeTa-aHaiu3a B MeauluHe. Ecau Ha®op maHHBIX HEOOJNBIION, CTaTUCTUYECKUIl TecT Ha
pacmipeziesieHue He OymeT Xopolno pabortatb. Mbl ipuMeHsieM BHyTpeHHUI Koadduiment baiieca B ciydae, Korma Kiac-
cuueckuii koaddunmeHt baiieca He cyiiecTByeT, sl BbIOOpa HauboJjee MOAXOISIE BEPOSITHOCTHONM MOIENIM CPelu He-
CKOJIBKMX MOJIeJIeil KOHKYPEHTOB, KOTOPhIe He 00s13aTeTbHO JOKHBI OBITh BIOXKEHHBIMUA. MBI TIpUMEHSIEM TTPEIOXKEHHYIO
METOJIOJIOTUIO K pe3yJibTaTaM M3MEpPEeHUi, UCTONb3yeMbIX IUIsl ONpPeAeeHUs] TPaBUTALlMOHHON MOCTOSTHHOU U MOCTOSIHHOM
Ilnauka.

Kimouessie cioBa: Mozenb cnydaitHbIX 2(pheKToB; f-pacmpesienienre; 6alieCOBCKII MeTO] BEIOOpa MOJeNnelt; BHYTPEHHUIA
koabdueHT baiieca; TpaBUTAllMOHHAs ITOCTOSTHHAST;, TTOCTOsSTHHas IliaHka.
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