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Abstract

Probability distributions suitable for modelling measurements and determining their uncertainties are usually based
on a standard approximation approach as described in GUM, i.e. the GUM uncertainty framework (GUF), using the law
of uncertainty propagation (also known as the delta method) or a more accurate method based on the law of probability
propagation calculated using the Monte Carlo method (MCM). As an alternative to GUF and MCM, we present a cha-
racteristic function approach (CFA), which is suitable for determining measurement uncertainties by using the exact probability
distribution of a measured quantity in linear measurement models by inverting the associated characteristic function (CF),
which is defined as a Fourier transform of the probability density function (PDF). In this paper, we present the current
state of the MATLAB implementation of the characteristic function approach (the toolbox CharFunTool) and illustrate the
use and applicability of the CFA for determining the distribution and uncertainty evaluation with a simple example. The

proposed approach is compared with GUM, MCM and the kurtosis uncertainty method (KUM).
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1. Introduction

In measurement and metrology, it is necessary
to take into account a complex combination of
influencing effects caused by measurement errors
and the effects of systematic errors or other possible
sources of uncertainty determined by type A and type
B evaluation methods. These complex effects can
significantly affect the accuracy of the uncertainty
analysis of measurement results. Usually, probability
distributions suitable for modelling measurement
results and determining their uncertainties are based
on a standard approach described in the Guide to the
Expression of Uncertainty in Measurement (GUM)
[1] using the law of uncertainty propagation or on
a method based on the propagation of probability
distributions calculated by Monte Carlo methods based
on GUM-S1 [2] and GUM-S2 [3]. An alternative tool
for forming the probability distribution of the output
quantity in linear measurement models is based on
the numerical inversion of its characteristic function
defined as a Fourier transform of its PDF, see e.g. [4—5],
here denoted as the characteristic function approach
(CFA) [6]. The aim of this paper is to present to the
interested reader the development and implementa-
tion of a set of suitable MATLAB algorithms, the
package CharFunTool — The Characteristic Functions
Toolbox, [7].

© HHILI «Incturyt Merposorii», 2022

CharFunTool is a MATLAB repository of algo-
rithms for evaluating the characteristic functions of
selected probability distributions and tools for combi-
ning and numerically inverting them. It is most
commonly used to evaluate the cumulative distribu-
tion function (CDF), the probability density function
(PDF) and the quantile function (QF) from a given
(combined or derived) characteristic function. For
the current status of the toolbox, see the webpage
https://github.com/witkovsky/CharFunTool. = The
toolbox includes the implementation of various
inversion algorithms, including those based on the
Gil-Pelaez inversion formulae [8] combined with the
simple trapezoidal quadrature rule [9] or other more
sophisticated quadratures and advanced accelera-
tion methods used to calculate the required Fourier
transform integrals of oscillatory functions, see e.g.
[10—12]. The current version of CharFunTool was
developed with MATLAB version 9.10 (R2021a). For
installation, you can either clone the directory with the
downloadable Git application or download the avai-
lable archive file (ZIP). After unpacking the archive
file, you have to add the CharFunTool directory to
the MATLAB path.

The simplest example to illustrate the functionality
of the CharFunTool package is the numerical
inversion of a characteristic function of the standard
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Table 1

Characteristic functions of continuous univariate distributions used in metrological applications (selected
symmetric zero-mean distributions) presented together with their standard deviation, kurtosis and the coverage
factor associated with the probability P e (0.1) . Here, J (2) is the Bessel function of the first kind and K (z) denotes
the modified Bessel function of the second kind

Standard

Probabili C
‘ro .a ' . v Characteristic function (CF) deviation Kurtosis overage
distribution A factor
(uncertainty)
1.
— o3t Z p
Gaussian N(0,1) cf(t) = e 2 1 0 145
=t () k(i) [ ° t
Student’s t ¢ c = \V viv P
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Triangular T(—1,1) cf(t) = L() — _Z 1-V1=P
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Arcsine U(—1, c = i _2 -
’ 2 2 2

normal distribution, which can be implemented in
MATLAB by two simple commands. The commands
cf=@ (t)exp(-t.”2/2) and result=cf2DistGP(cf) eva-
luate the PDF and CDF of the standard normal
distribution for 100 automatically specified equidi-
stant x-values using only the specified characteristic
function, and plot their graphs. The detailed results are
saved in the result data structure for further use. To
get started with the toolbox, we recommend you take
a look at the collection of examples and the detailed
help on the included characteristic functions and
inversion algorithms.

This paper is structured as follows. In Section 2 we
present the basic principles of combining characteris-
tic functions and the basic methods for their numerical
inversion. We present a list of the currently available
characteristic functions included in the package.
In Section 3, we illustrate the applicability of this
implementation for the calculation of the distribution
of the output quantity, based on a linear measurement
model and a fully specified uncertainty budget. The
exact result is compared with the results of the MCM
method [13] and the KUM method, see e.g. [14].

2. Characteristic functions, their combinations, and nu-
merical inversion
Let Y denote the continuous univariate random
variable with its PDF denoted by pdf(y). Then the
characteristic function (CF) of the distribution of Y is
given by the Fourier transform of its PDF,
ofy (1) = [ & pdfy (y)dy. (1)
Exact analytical expressions of the characteristic
functions are known for many standard probability
distributions. Table 1 shows the characteristic func-
tions of selected continuous univariate distributions
(symmetric and zero-mean) commonly used in mo-

delling measurements in metrological applications, to-
gether with their standard deviation, kurtosis and the
coverage factor associated with the specified probabi-
lity P. In general, analytical inversion of CFs is often
difficult or impossible. Numerical inversion requires
the integration of a real-valued function. Under mild
conditions, Gil-Pelaez has derived the inversion
formulae suitable for the numerical evaluation of
the PDF and/or the CDF, which only require the
integration of a real-valued function, see [§],

pdfy () = [ 3¢ ofy (), @

T

© —ity f
cdf, () = %—%js(%m}z 3)

Here, by R(f()) and 3(f(r)) we denote the
real and imaginary part of the complex function
f(t), respectively. Typically, these integrals require
integration of the (highly) oscillatory functions. For
the numerical evaluation of these integrals we can
use the trapezoidal rule of integration, which works
surprisingly well for most typical cases, for more de-
tails see e.g. [9]. In particular,

5, & _ity
pdfy (1) = - 2w R (e " ef, (1) @)
J=0

y et (t,
Cdfy(y)z%—EijS[LY(j)} )

j=0

where N is a sufficiently large number of (equidistant)

sub-intervals of the interval (0, 7). Here, w, are
1

the appropriate quadrature weights (w, =w, = > and

W, = 1 forj =1, ..., N-1), and l denote the ap-
propriate (equidistant) nodes from the interval (0, 7T'),
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for sufficiently large 7. Here, we set §, =%, where

(A, B) specifies the support of the distribution of the
random variable Y, i.e. the range of typical values y

N2
of the distribution of ¥, which gives = ﬁ. In general,

other, more sophisticated methods are required in
more complex situations, as e.g. the double exponential
formula for the Fourier-type integrals [12].

The numerical inversion of the appropriate CF is
applicable in parametric, non-parametric, as well as
semi-parametric settings. Working with CFs offers an
alternative and often simpler way than working directly
with PDFs and CDFs. In particular, CF of a random
variable defined as a linear combination of independent
random variables, e.g. ¥ =c¢, X, +...+¢,X,, where X, have
known cf X, (#) and the coefficients C is given by

cfy (1) =cf (ct)x..xct, (c,0). 6)

Similarly, CF of a weighted mixture distribution,
say F, =Y wF, with weights such that » w =1, is

i=1 i=1

of, (1) =Y wcf, (1), )

Finally, CF of the empirical characteristic function,
say F,, based on the observed data, say Xps oo s X,
is a mixture of the CFs of the Dirac distributions
centred at x,

cf ()= 3 e ®)
niz

The implementation of the algorithms for the
numerical evaluation of the selected characteristic

Table 2

List of algorithms for computing characteristic functions. A simple naming structure is chosen to specify the
characteristic function associated with the specific type of probability distribution

CharFunTool Charocteristic Functions

Continuous distributions:

cf_ArcsineSymmetric

cf Beta

cf_BetaNC
cf_BetaSymmetric

cf BirnbaumSaunders
cf_Chi

of_ChiNe

cf_ChiSquare
cf_Exponential
cf_FisherSnedecor
cf_FisherSnedecorMNC
cf_FoldedNormal
cf_Gamma
cf_GeneralizedExponential
cf_Generalizedlindley
cf_Gumbel
cf_HalfNormal
cf_HalfNormalNC
cf_InverseGamma
cf_InverseGaussian
cf_Laplace

cf_Logistic
cf_MaxwellBoltzmann
cf_MaxwellBoltzmanniC
cf_Makagami
cf_MakagamiNC
cf_Mormal

cf_Rayleigh

cf RayleighMC
cf_Rectangular
cf_RectangularSymmetric
cf Rice

cf_SkewNormal
cf_Stable

cf Student
cf_TrapezoidalSymmetric
cf_TriangularSymmetric

of _TSPSymmetric
of_WignerSemidrcle

Empirical probability distributions:

ofE_DiracMixture
cfE_Empirical
cfE_Empirical Bootstrapped
ofE_Empirical Ogive

Log-transformed random voriables:

of_LogRV_Beta
cf_LogRV_BetaNC
of_LogRV_Exponential
of_LogRV_Chi
of_LogRV_ChiNC

of _LogRV_Chisquare
of_LogRV_ChiSquareNC
cf_LogRV_FisherSnedecor

of _LogRV_FisherSnedecorMC
of _LogRV_Gamma

of _LogRV_GammaiNC

cf _LogRV_HalfMormal

cof _LogRV_HalfNormalNC
of_LogRV_InverseGamma

of _LogRV_MaxwellBoltzmann
of _LogRV_MaxwellBoltzmannMNC
cf_LogRV_MeansRatio

of _LogRV_MeansRatioW

of LogRV_Makagami
cf_LogRV_NakagamiMNC

of _LogRV_Rayleigh

cf LogRV_RayleighMC
cf_LogRV_Rectangular

of _LogRV_Rice

cof _LogRV_Weibull

cf _LogRV_WilksLambda

of _LogRV_WilksLambdaMNC

Discrete distributions:

cofN_Binomial
cofM_Delaporte
cfN_GeneralizedPoisson
cof N_Geometric
cfM_Logarithmic
cfN_NegativeBinomial
cofN_Poisson
cfM_PolyaEggenberger
cfN_Quinkert

of N_Waring

Other non-negotive distributions:

cf¥_GeneralizedPareto
cof¥_PearsonV|
cf¥_Weibull
cf¥_Loglogistic
cof¥_LogMormal
cfX_Pareto
cfX_PearsonV

Multivariote test stotistics:

cfTest_Bartlett
cfTest_CompoundSymmetry
cf Test_EqualityCovariances
cfTest_EqualityMeans
cfTest_EqualityPopulations
cfTest_Independence
cfTest_Sphericity
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function is realised by the developed MATLAB
package CharFunTool together with the tools for
their combinations and numerical inversion. Table 2
shows the current list of algorithms for computing the
characteristic functions.

The included algorithms for calculation of the
characteristic functions of the univariate continuous
distributions have a uniform structure of the input
arguments:

cf Distribution(#, parl, ... , park, coef), (9)

e t represents a vector of values where the
characteristic function will be evaluated,

* the second group of input arguments are the
distribution parameters, parl, ..., park (the number of
the input parameters depend on particular distribu-
tion), the input parameters should be scalars or vec-
tors of equal sizes,

* the third input argument coef is a vector of
coefficients of the same size as the parameter vectors.

For example, consider linear combination of
independent random variables, say Y =2X, +3X,-X,,
where X ~ Gamma(a,, B,) are independent (however
not identically) gamma distributed RVs with parame-
ters o, =a, =0,=2 and B, =1; B, =2; B, =3. Then, in
CharFunTool, the characteristic function of Y, say
cf(¢), is given as an anonymous function of the vector
argument ¢, as

cf=@(t) cf Gamma(t, [2,2,2],[1,2,3],[2,3,—1]). (10)

The combined characteristic function can be
further numerically inverted to obtain the PDF,
the CDF or the quantile function QF. The input
arguments of the inversion algorithms also have a
uniform argument structure:

result = cf2DistGP(cf, x, p, options), (11)

» the first argument cf is the anonymous cha-
racteristic function of the argument 7,

* the second argument x is a vector of values,
for which the PDF/CDF is to be evaluated,

* the third argument p is a vector of probabili-
ties where the quantiles of the distribution are to be
evaluated,

* the fourth argument options are an optional
structure used to control the inversion algorithm.

Other currently available inversion algorithms:
cf2DistGPT — algorithm based on the Gil-Pelaez
inversion formula and the trapezoidal rule used for
integration, cf2DistGPR — algorithm based on the Gil-
Pelaez inversion formula and the Riemann sum used
for integration, cf2DistGPA — algorithm based on the
Gil-Pelaez inversion formula and the adaptive Gauss-
Kronod quadrature with acceleration, cf2DistFFT —
algorithm based on using the fast Fourier transform

(FFT) algorithm, and cf2DistBV — algorithm based on
using the Bakhvalov-Vasileva approximation.

3. Calibration of a coaxial step attenuator

To illustrate the CFA and its comparison with
MCM and KUM, we consider here as an example
the linear measurement model for the calibration of
a coaxial step attenuator as considered in [15]. The
linear measurement model of the attenuation L, of
the attenuator to be calibrated is given by

L, =const+ Lg +3Lg +06L,, +
+6L,, +06L, +06L, —dL, +0L,, —dL,,, (12)

where const = 30.043, and the other input quantities
are represented as independent random variables
with the following probability distributions (here with
unspecified measurement units):

Ly~0.0090x N(0.1), with the standard uncertainty
©#=0.0090, and the kurtosis parameter n=0,

8Ly~ (0.0025v3)x R(~1.1), with ©=0.0025, and
n=-1.2,

8L,~(0.00115/2)xU(-1.1), with #=0.0011, and
n=-1.5,

8L,,~(0.0200v2)xU(~1.1), with «=0.0200, and
n=-1.5,

8L, ~(0.001752)xU(-1.1), with ©=0.0017, and
n=-1.5,

8L,~(0.0003v3)x R(~1.1), with «=0.0003, and
n=-1.2,

8L, ~(0.0003\3)x R(-1.1), with »=0.0003, and
n=-1.2,

8L,,~0.0020x N(0.1), 1=0.0020, and n=0,
8L,,~0.0020x N(0.1), u=0.0020, and n=0,

where by N(0.1) we denote the standard normal
distribution with mean 0 and standard deviation 1, by
R(-1.1) the symmetric rectangular distribution on the
interval (-1.1), and by U(-1.1) the symmetric U-shaped
(Arcsine) distribution on the interval (-1.1).

Using the characteristic functions approach (CFA)
with the CharFunTool package the numerically exact
value of the expanded uncertainty U(y), i.e. the upper
97.5% quantile of the (zero-mean) distribution of the
output quantity ¥ = L, — const, was determined as
U(y) = 0.03900448275179 in 3.9%10* seconds.

On the other hand, by using the Monte Carlo
method (MCM) we have estimated the expanded
un-certainty U(y), i.e. the upper 97.5% quantile of
the (zero-mean) distribution of the output quantity
Y = L, — const, based on using M = 10° randomly
generated realisations of Y, as U(y) = 0.0389525
in 0.75 seconds. Moreover, based on M = 108
randomly generated realisations of Y we obtain
U(y) = 0.039003626106614 in 153.2 seconds.

Finally, using the kurtosis uncertainty method
(KUM) proposed in [14], we obtain the standard
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uncertainty of the output quantity Y as u(y) = 0.0224  +0.In+1.96=1.7672, and thus, theestimated expan-

with the calculated kurtosis ded uncertainty is U(y) = k,,s(n)*xu(y)=0.0395.
] ‘4 This clearly illustrates the advantages and
ancju (x;) computational efficiency of the proposed CF approach
n) ZHMTZ—O-%N- over the other alternative methods, especially in the

situation when the measurement model is linear and
For the required coverage probability P = 0.95 high precision of the computed (estimated) quantiles
the estimated coverage factor is k,o(n)=0.1085n* +  is required.

Peamizanisa maxoay 3 BUKOPUCTAHHSAM
XapaKTEePUCTHYHUX (PYHKIiA 1A OLIHIOBAHHS
HEBHU3HAYEHOCTI BUMIPIOBAHb

B. BiTkoBCbKUM

IHcmumym eumiptosanbHux Hayk Crosaubkoi akademii Hayk, [ybpascbka Oopoeza, 9, 84104, bpamucnaea, Crnogay4uHa
witkovsky@savba.sk

AnHoTauis

Y MeTpoJIoriyHili MpakTULli OLIiHIOBAaHHS HEBU3HAYEHOCTi BUMipIOBaHb 3a3BMYail 3aCHOBAHO Ha CTAaHAAPTHOMY IMiAXO[i,
K omucaHo B “HacraHoBi 3 momaHHsS HeBM3Ha4YeHOCTi BuMipioBaHb” (GUM), 3 BUKOPHMCTaHHSIM 3aKOHY MOIIMPEHHS
HeBu3HavyeHocTi. Lleit minxin € HaOIMXEeHUM, OCKIIbKM B MOTO0 OCHOBY IMOKJIAJEHO LIEHTPAJbHY IPAaHUYHY TeOpeMmy Teopil
MMOBIpHOCTI 3 arapaToM 4Yucja CTYNeHiB CBOOOAM, 110 BU3HAYAIOTh HEAOCTOBIPHICTb OLIIHOK PO3IIMPEHOI HEBU3HAYEHOCTI
yepe3 irHOpyBaHHSI BIUIMBY 3aKOHIB PO3MOMITY BXiTHMX BEJIWYUH HA 3aKOH PO3IMOJLTY BUMIpPIOBaHOI BEJIUYMHU. dpyrum
BiIOMMM TIiIXOIOM A0 OlIiHIOBAaHHSI HEBM3HAYEHOCTi BHUMipIOBaHb € 3aKOH TMOIIMPEHHS MMOBIpHOCTi, 3aCHOBaHWI Ha
BUKOpHCTaHHI MeTomy Monte-Kapmo (MMK). Moro HemomiKoM € HeMOXIMBICTh OTPHMAHHS iCHYIOUMMH TTPOTPAMHIMI
3acobaMi, 1110 peanizyioTb MMK, moBHOro 6101xeTy HeBU3HAYEHOCTi BUMipIOBaHb. [HITMM BiZOMMM METOJOM OLIiHIOBaHHS
HEeBU3HAYEHOCTI BUMipIoBaHb € MeTon ekcieciB (KUM), 3acHoBaHMIT Ha OOYMCIICHHI €KCIIeCY BUMIPIOBAHOI BEJIMYMHU Yepe3
ekciuecu BxinHux BeqnuuH. Sk anbrepHatuBa GUM, MCM ta KUM B cTaTTi ONMUCYETHCS MiXil XapaKTEPUCTUUHUX (PYHK-
it (CFA), 3acHOBaHMIT Ha BUKOPUCTaHHI TOYHOTO PO3MOIiTY MMOBIpHOCTEI BUMipIOBaHOI BEIMYMHU Y MOACIIAX JIIHIMHUX
BHMipIOBaHb IIUISIXOM iHBEPTYBaHHs ITOB’SI3aHOI 3 HEIO XapaKTepuCTUYHOI (PyHKILl, Bu3HaueHoi sk Dyp’e repeTBOpeHHS
¢yHKUii ryctmHU HMoBipHOCTI. s fioro peanizanii 3actocoByeTbes maHedb iHCTpyMeHTiB MATLAB CharFunTool.
BukopuctaHHsl 1IbOro MiAXOMY IIOCTPYETbCS HAa MPOCTOMY MPUKJIAAi OLIiHIOBAaHHS HEBM3HAYEHOCTI BUMiplOBaHb Iil yac
KaiOpyBaHHS KOaKCiaJJbHOTO CTYMiHYACTOrO aTeHioaTopa. PesyinbTaTu, OTpMMaHi 3a JTOMOMOIO0 MTPOIMOHOBAHOTO ITiIXOMIy,
MOPIiBHIOIOTHCS 3 pe3ysibTaramu, oTpuMaHuMu 3a goriomororo GUM, MCM rta meronom exkcueciB (KUM). JleMOHCTpyeTbCS
obumcaoBaibHa e(EeKTUBHICTh 3aIPONOHOBAHOIO METOAY B MOPIBHSIHHI 3 BiIOMUMMU.

Kmouosi cioBa: HeBU3HauyeHicTh BUMipioBaHb, MeTtoauka GUM; meton Monte-Kapio; meTon exciieciB; Miaxiid,
3aCHOBaHUI Ha XapaKTepPUCTUUYHUX (PYHKIIISIX; YUCI0OBA iHBEpCis.

Peaiu3anusg nmoaxoaa ¢ MCNOJIb30BaHHEM
XapPaKTePUCTHYECKUX (PYHKUIMH 1Jis OLleHUBAHUS
HeonpeaeJJeHHOCTH M3MepPeHUs

B. Butkosckumn

UHemumym u3amepumernbHbix Hayk Criosaukol akademuu Hayk, [ybpasckasi 0opoza, 9, 84104, bpamucnasa, Crnosakus
witkovsky@savba.sk
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AHHOTaIMS

PacnipeneneHnst BeposITHOCTE, TTOIXOMSIIINE 11 MOASIMPOBAHUS U3MEPEHUI M OIICHUBAHMS MX HEOIPeIeIeHHOCTEN,
00BIYHO OCHOBAHBI HA CTAaHIAPTHOM MPUOIMKEHHOM Tonxone, Kak onmrucaHo B GUM, To ecTb Ha CTPYKType HEONpeaeIeHHOCTH
GUM (GUF — GUM Uncertainty Framework), ¢ ncrnojb30BaHUEM 3aKOHA PAacClpPOCTPAHEHUS] HEONPENEIEHHOCTU (TakxKe
M3BECTHOTO KaK JeJbTa-MEeTON) WM 0ojiee TOYHOM METOIe, OCHOBAHHOM Ha 3aKOHE PaclpOCTpaHEHUS BEPOSITHOCTH,
paccuuTaHHOM ¢ Hcnosb3oBaHueM Mmetona MoHTte-Kapio (MCM — Monte Carlo Method).

B kauectBe anbrepHatuBsel GUF u MCM npencrasieH noaxon Xapakrepuctnyeckux dyHkuuii (CFA — Characteristic
Funtions Approach), KOTOpBIif MMOAXOAUT JJISI OINpPEACCHUS HEOIPEAeICHHOCT M3MEPEHUS Ha OCHOBE MCITOJIb30BaHMS
TOYHOTO pacnpeaeeHUs] BEPOSITHOCTEN M3MEPsIEMO BeJIMYMHBI B MOIEISIX JIMHEWHBIX U3MEPEHUI MTyTeM MHBEPTUPOBAHMS
CBSI3aHHOIM ¢ Hell xapakrtepuctudeckoit pynkunu (CF), onpenenenHoit kak @ypbe nmpeodpa3oBaHusT (GYHKIMU TNIOTHOCTH
BepossTHocTu (PDF). [lns peanuzanuu roaxona XapakKTepUCTUYECKON (DYHKIIMM HCIIOJb3yeTCsl IMaHeJb WHCTPYMEHTOB
MATLAB CharFunTool. IIpemnaraemsriii momxon cpaBHuBaetcss ¢ GUM, MCM u MeTOIOM HEOIpeneIeHHOCTH 3KCIIECCOB
(KUM — Kaurtosis Uncertainty Method).

KioueBbie cjioBa: HeolpeaeaeHHOCTh u3MepeHuit; Meroguka GUM; metron MoHTe-Kapiio; MeTon 3KClecCoB; MOAXO]I,
OCHOBaHHBIII Ha XapaKTEePUCTUUYECKOU (DYHKIIMU; YKMCIIOBasi MHBEPCHS.
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