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Abstract

The method of recursive discrete wavelet noise filtering for improving metrological characteristics of measuring
instruments was investigated for the first time. Methods with a common threshold for all decomposition levels, methods
without threshold with a simple zeroing of detail coefficients until the minimum mean square (RMS) error is reached, and
methods with universal threshold for detail coefficients at each decomposition level were studied. Twenty different types of
measurement signals from the popular PyWavelets library were analyzed. The functions of filtering methods with a common
threshold were determined, for which the use of recursion reduces the filtering error from 10 to 50%. For methods without
threshold and with universal threshold, the recursion does not reduces the error by multiple filtering of measurement signals.
To apply the recursion to the method with a common threshold for all decomposition levels, a mathematical model based
on the fundamental equations of wavelet filtering was constructed. The character of distribution of the filtering RMS error
depending on the number of reversible cycles is investigated. It was summarized that for the measurement signal models
under consideration, the maximum error reduction occurs between the zero cycle, in which the initial measurement signal
is filtered, and the first level of recursion. Further reduction of the filtering error with increasing number of recursion cycles

occurs according to the law close to hyperbolic.
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Introduction

Today, wavelet filtering is one of the most pro-
mising techniques of information processing, which is
proved by an extensive scope of application: cleaning of
measurement signals from noise, identification of signal
anomalies, spectral analysis, and data compression. The
discrete wavelet transform is used for signal analysis
and synthesis. A convincing advantage of the discrete
wavelet transform is its comparative economy in the
number of operations and memory requirements with
respect to the continuous wavelet transform [1].

The essence of wavelet signal analysis is to
decompose a signal into a number of approximating
and detailing coefficients, and since the latter ones
characterize the noise component, the processing
method of detailing components determines filtering
efficiency in general [2]. One of the most well-known
approaches for detailing coefficients processing is
thresholding (zeroing) the coefficients that do not
exceed a given value (threshold) [2, 3]. This method
of noise removal is called thresholding [4], and the
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quality of noise reduction depends on the type of
a thresholding function and the way it is applied [5].
The use of a local method with an adaptive universal
threshold does not allow its capabilities to be fully
realized [6].

Literature analysis and problem statement

The recursive filtering algorithm is considered in
[7], and the use of recursion by the discrete wavelet
filtering method is considered in [8]. According to
[8], the suggested batch method of wavelet filtering
has a low efficiency of 0.0035 dB per iteration and
requires significant computing resources [9] due to the
imposition of restrictions on both detail coefficients
and approximation coefficients.

The authors of [10] also describe replacing the
hierarchical computational design by a horizontal-
recursive one and solving the problem of constructing
basis wavelets that satisfy the recursion requirements.
However, the paper is more of an overview giving
examples of new and known wavelets for which there
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are effective (recursive) algorithms to compute the
local discrete wavelet transform.

In [11], the experience of applying the recursive
approach to Butterworth filters is described. According
to the authors, the main difference is that the signal
transformation is carried out through recursive filtering
using IIR filters. Such filters use one or more of their
outputs as input.

The authors of [12] suggest separating the signal
from the noise using nonlinear thresholding, avoiding
computationally resource-intensive block thresholding
algorithms on the scale-time wavelet plane. Efficiency is
achieved by estimating the pre-event noise characteris-
tic statistics using empirical cumulative distribution
functions and then applying these characteristics to
the threshold of the entire time series using hard or
soft nonlinear thresholding.

The most urgent task is to evaluate specific
functions of radars and sonars [13—16].

The purpose of this paper is to increase the ef-
ficiency of discrete wavelet filtering by the recursion
method using examples of noisy complex functions:
“MishMash” (simulating radar and sonar signals) and
“HeaviSine” (simulating anomalies in the form of
sharp changes in the signal).

1. Recursive mathematical model of discrete wavelet
filtering with a common threshold

The initial data for constructing a mathematical
model of recursive filtering is a noisy signal:

L@ = 1)+, )]

where f(z,) is the function of a pure measuring signal;
J,(@) is the function of a noisy signal; n is white noise
of normal distribution.

In the process of multiple filtering, signal (1) is
cleared of noise with a gradual decrease in the additive
component 1.

For the transition from time domain f, (z) to
frequency domain, we use the expansion of signal (1)
over all decomposition levels [17] taking into account
that a,,, , and d,,, , are not individual coefficients,
but series and integrals taken repeatedly for each set
of values j, k:

Qjsjok = Ian (1) @ joui (t)dt

, (2)
dj+j0,k = IR fn () Vitjok (H)dt

where R is the function definition interval f (7); a,,; i,
d,, ., are the approximation and detail coefficients
of a noisy signal respectively; ¢,,, (),v,,, ,(¢) are
the maternal and paternal wavelets respectively; j, j, k
are the initial and current levels of the wavelet decom-
position and the serial number of a wavelet coefficient.

To return from frequency domain (2) to time do-
main on the n-th recursion cycle, we obtain relation (3):

S @) =2a] 09 (O
L, 3)
L2 F O O,

j=l k

is a filtered signal for the n-th
is the number of a current
are the approximation

where  f"(1,)
recursion cycle; n
recursion cycle; af, . .d7,,
and detail coefficients for the n-th recursion cycle.
0 s O, (O, F"(X}) are optimal parameters
of discrete wavelet filtering for the n-th recursion
cycle obtained from the conditions of the proportion
minimum error (4).

E = %Z(f(r,-) —fr ) @)

where E" is the minimum RMS filtering error for the
n-th recursion cycle.

The suggested algorithm works as follows: we apply
relation (2) to signal (1), return to the time domain
according to (3), filter the signal, then calculate the
error according to (4) and decompose the resulting
signal according to (2). Repeating this sequence many
times for different sets ¢7,, ,(0),y/,, (@), F"(L]) [18]
we obtain a set of errors E°... E" arranged in descending
order.

It is thus obvious that the recursion should be
stopped when the error does not change over two

cycles:
En—l — Er/—l — En. (5)

2. Numerical analysis of a recursive mathematical model
of discrete filtering with a common threshold

Let us consider a complex “MishMash” [18]
function simulating a measurement signal consisting of
three sinusoids with different phases and frequencies:

f](t):sin(g-rm-tz)

J2(t) =sin(n-m-0.6902-1) (6)
£,() =sin(r-m-0.125-1>)

SO = /1O + L0+ f(0)

where m=1024 is the number of samples of the
function f(¢).

According to (1), let us add white noise of normal
distribution with zero mathematical expectation and o=
= 0.4 to the function f(¢). Let us perform recursion
using (1)=(5) according to the suggested algorithm.

To analyze the results of the recursion, we obtain
a relation to determine the noise power reduction
AU =U; -U/, where U is the noise power for
filtering without recursion, U, is the noise power for
filtering after recursion with n cycles:

( > @)
z[f;ll(ti)_f(ti)]2

U, =10- 1Oglo ), 7
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where Z f (t,.)2 is the sum of the squares of the samples
of the function f(z) of a “pure” signal;

D [f(t) = f(@)F is the sum of the squares of the
sample differences of the function f,,(7,) of a filtered
signal without recursion and a “pure” signal.

( > ray )
Z[fnz(ti)_f(ti)]z ’

where Z[fnz(ti)—f ()] is the sum of the squares
of the sample differences of the function f,(;)) of
a filtered signal after n recursion cycles and a “pure”
signal.

U, =10-log,,

®)

Z[fnl (ti ) - f(ti)]z
2L @)= ()T

where AU is the noise power reduction due the use of
recursion at discrete wavelet filtering of signals.

For function (6), taking into account the signal
to noise ratio of 9 dB before filtering, at E° =
=(.1454, the filtering parameter are: wavelet — 27 dB;
F'A))~"soft"; 1% =0.2 [18]. According to the sug-
gested algorithm we obtain £ = 0.1303 and the signal
to noise ratio of 10 dB, and the filtering parameters
are: wavelet — bior3.3; F°(A)="hard"; A7 =0.1.
The error reduction is 10.4% (Fig. 1).

AU =10-log,,( ), )
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Fig. 1. The distribution of the root-mean-square filtering error E
over n recursion cycles for noisy model function (7), where E is the
error; n is the number of recursion cycles

On the same graph, let us plot the initial function
(6) of a measuring signal and the function obtained
after recursive filtering f,”(z,) (Fig. 2).

6 260 460 660 860 lDID()
m
Fig. 2. Graphs of “clean” measuring signals — 1, and filtered measuring

signals taking into account recursion — 2, according to relations (6),
where: a is the relative signal amplitude, and m is the signal length

Let us consider a “HeaviSine” [18] measurement
signal:

1(t) = 4-sin(dn-1) - sign(t — 0.3) — sign(0.72 ). (10)

For function (10), taking into account the
signal to noise ratio of 18 dB before filtering, at
E°=0.0117, the filtering parameters are: wavelet —
biord.4; F"(A})—"garotte"; L =1.0. According to
the suggested algorithm we obtain E' =0.0071 and
the signal to noise ratio of 31 dB, and the filtering
parameters are: wavelet — bior3.3; F'"(A)—"hard";
A =0.1. The error reduction is 39.3% (Fig. 3).
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Fig. 3. Recursion efficiency for ratio function (10), where E is the
error, and n is the number of recursion cycles

On the same graph, let us plot the initial function
(10) of a measuring signal and the function obtained
after recursive filtering fn” (t,) (Fig. 4).

(I) 260 460 660 560 lDbO
Fig. 4. Graphs of “pure” measuring signals — 1, and filtered measuring
signals taking into account recursion — 2, according to relation (10),
where: a is the relative amplitude of the signal, and m is the signal
length

Having analyzed the plots for “pure” and filtered
measuring signals (Fig. 4) it was summarized that the
recursion allows achieving a high level of coincidence
of a filtered signal with (10).

To obtain a recursive mathematical model of
discrete wavelet filtering without threshold, it is suffi-
cignt to change the second summand of relation (3) to

Z Zdjw.u’k W', «(#) by starting the first summation
J=Jo K
from the j= o decomposition level because all wavelet
detail coefficients are replaced by zeroes from the first
decomposition level to the J= Jopt decomposition level.
Data obtained from model function (6) with 10 dB
of noise from [18] demonstrate that the filtering error
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does not change in each recursion cycle and remains
FE°=0.1581 with a biorl.1 wavelet. Numerical verifica-
tion on model function (10) with 18 dB of noise [18]
before filtering demonstrates that E°=0.0176 and
a filtering parameter is a biorl.3 wavelet. According to
our suggested algorithm, we obtained £°=0.017, the
signal to noise ratio of 27 dB and a biorl.1 wavelet
as a filtering parameter. The error reduction is 3%.

To obtain a recursive mathematical model of
discrete wavelet filtering with universal threshold,
we should take into account that the threshold A in
relation (3) is not given, but it is calculated by the
following relations [15]:

median(| d, , |)
c=——"—"—"—
0.6742

M=o [2In N,

where NI‘.”"” is the universal threshold; NJ is the
number of the detail coefficients dj’k on the j level of

an

decomposition; median(|d,, |) is the median of the
array |d,, | of the detail coefficients on the first le-
vel of decomposition. However, numerical verifica-
tion (11) on model functions (6) and (10) of measure-
ment signals with regard to the noise has shown that
the filtering error in each recursion cycle does not
change and remains E°.

Conclusion

The use of recursion in discrete wavelet filtering is
effective only for a method with a common threshold
for wavelet detail coefficients. For the “MishMash”
function, which is a complex signal of sonars and
radars, the filtering error using the recursion me-
thod is reduced by 10.4%, and the noise is reduced
by 1dB. For the “HeaviSine” function, which simu-
lates anomalies in signals, the filtering error using
the recursion method is reduced by 39.3%, and the
noise is reduced by 13 dB after 15 cycles of recur-
sion.

IligBHIEeHHsA METPOJIOTIYHUX XAPAKTEPUCTHK 3aC00iB
BUMIPIOBAHHS ILJISIXOM JUCKPETHOI BeuBJieT-(iabTpanii

IIyMiB METOAOM peKypcil
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AnoTauis

Brnepuie nmociimkeHO MeTOH peKypCUBHOI JTUCKPETHOI BelBieT-(iabTpallii LIyMiB ISl TTIABUILEHHSI METPOJOTIYHUX
XapaKTepUCTUK 3ac00iB BUMiploBaHHs. JloCaimKyBaaucss METOAU: i3 3araJibHUM ITOPOTrOM ISl BCiX piBHIB JEKOMIIO3UILIii; 0e3
nopora i3 npocTuM OOHYJIEHHSIM KOoedillieHTiB feTai3allii 10 TOCATHEHHs MiHiMallbHOI CEpeHbOKBAAPATUYHOI TOXUOKU; 3
YHiBepCaJIbHUM TMOPOroM KoedillieHTiB AeTasizallii A KOXHOTO piBHS JeKOMIIO3ullii. byslo mociimkeHo nBaausaTh pi3HMX
TUIIIB BUMIPIOBAJIbHUX CUTHAJIB i3 momnyJisipHoi 0iomioteku PyWavelets. Buznaueno ¢yHkii MmeToniB dinbrpaliii i3 3araabHUM
MOPOroM, JUIsl SIKUX 3aCTOCYBaHHS peKypcii 3HIKye moxubKy dinbrpanii Bin 10 o 50%. Pexkypcis He 3ab6e3neuye CyTTEBOro
3HUXKEHHS MOXMOKM IS MeToAiB 0e3 Imopora Ta 3 YHiBepcalbHUM moporoM. [t 3acTocyBaHHSI peKkypcili 10 MeTomy i3
3araJilbHUM TTOPOTOM JIsl BCiX PiBHIB AEKOMITO3UIlii MTOOYA0BAHO MaTeMaTUYHY MOjeJib, OCHOBOIO SIKOI € (DyHIaMeHTaJbHi
pPiBHSIHHS BeliBneT-(dinbrpaliii. BuBueHO XapakTep po3MOIily cepeIHbOKBAAPATUIHOI MOXMOKM (inbTpallii Bil KiIbKOCTI
peBepcUBHMX HUKIIiB. [TokazaHo, 110 IJIs AOCTIIKYBaHUX MOJENEH BUMIpIOBAIbHUX CUTHAJIIB MaKCUMajJbHE 3HUXKEHHS
MOXUOKMU BimOYBAETHCS MiXK HYJbOBUM ILIUKJIOM, Y SIKOMY (DiIBTPYETHCS BUXITHWI BUMIpIOBAJIbHUI CUTHAJ, i MEpIIUM piBHEM
pekypcii. [loganbiiie 3HMKEHHSI TTOXUOKU (inbTpanii 3i 3pocTaHHSIM YuCIa LIMKIiB peKypcil BilOYBaeTbCcs 3a 3aKOHOM,
OJIM3BbKUM JI0 TilepOoiuyHOro.

KiiouoBi ciioBa: peKypcUBHUIA aJrOPUTM; CepelHbOKBaApaTUYHA MOXMOKaA; YMcesibHA ONTUMI3allis; MOIEJbHUI CUTHA;
NUCKPETHE BEUBIET-NEPETBOPEHHS; MUIbTpallisl 1IyMiB; piBEHb IEKOMITO3UILIii.
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AHHOTaIMS

BrepBble uMccienoBaH MeETON PEKYPCUBHOW JUCKPETHOM BEWBIET-QUIbTpALMU IIYMOB [JI TOBBIIICHUS
METPOJIOTMYECKUX XapaKTePUCTHK CPEACTB M3MepeHuil. McciemoBannch METOABI: C OOLIMM IIOPOTOM [JIsl BCEX YPOBHEN
JIEKOMIIO3ULINK; Ge3 Iopora ¢ MPOCThIM OOHYJIeHNEM KO3(MGUIIMEHTOB AeTaIM3alliN 1O MOMEHTA JOCTHKEHUST MUHUMAJIBHOM
CpeIHEeKBaaAPaTUIECKOI MOrPelIHOCTH; ¢ YHUBEPCAIbHBIM IOPOTOM ik KO3GhMUILMEHTOB AeTaTu3ali Ha KaXIOM YPOBHE
JIeKOMITO3UIIMK. BhutM MccenoBaHbl IBaalaTh Pa3IMUHBIX THUIIOB M3MEPUTEIbHBIX CUTHAJIOB U3 MOMYJISIPHON OUOIMOTEKU
PyWavelets. OnpeneneHbl (yHKIMM METOAOB (PUABTPALMM C OOLIMM MOPOrOM, ISl KOTOPBIX MTPUMEHEHUE PEKYPCUM CHUKACT
rorperHocTh Guibrpammu or 10 mo 50%. Pexkypcust He oGecrieuMBaeT CYLIECTBEHHOIO CHYKEHUSI ITOTPEINHOCTU IS
MeTOZI0OB 0e3 rmopora U ¢ YHUBEpCaabHbIM MOporoM. sl mpUMMEHEeHUsI PEeKYPCHM K METOAY C OOIIMMM ITOPOrOM JUIsl BCEX
YPOBHE JEKOMIIO3ULUHU IOCTPOEHA MAaTeEMAaTUYECKask MOJIEIb, B OCHOBY KOTOPOI ITOJIOXKEHBI (DyHIaMEHTAIbHBIE YPaBHEHUS
BeiiBeT-buapTpaluu. M3yyeH xapakrep pacrpeneieHus cpelHeKBaapaTUuecKoi MOrpetHoCTy (GUabTpallMi OT KOJIMYECTBA
PEBEPCHUBHBIX LIUKIIOB.

KioueBbie cioBa: pEKprI/IBHbel AJITOPUTM; CPCOHEKBaapaTU4YeCKas IOIPpCIIHOCTb, YUCJICHHAas OITHUMU3aAlMA,

MOJIEJIbHBII CUTHAJ; TUCKPETHOE BeliBiIeT-TipeoOpa3oBaHue; GWIbTpALUs IIYMOB; YPOBEHb JEKOMITO3UIIVN.
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