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Abstract

Multivariate meta-analysis is a mostly used approach when multivariate results of several studies are pooled together.
The multivariate model of random effects provides a tool to perform the multivariate meta-analysis in practice. In this paper,
we discuss Bayesian inference procedures derived for the multivariate model of random effects when the model parameters
are endowed with two non-informative priors: the Berger-Bernardo reference prior and the Jeffreys prior. Moreover, two

Metropolis-Hastings algorithms are presented, and their convergence properties are analysed via simulations.
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1. Introduction

Meta-analysis presents an important quantitative
tool for combining measurement results obtained in
different studies [1, 2]. It is widely used in several fields
of science, like medical science, physical science and
chemistry [1—4].

In many applications, each individual study per-
forms measurements of a few features simultaneously,
and, as such, the result of each individual study consists of
a few measured values, which are reported together with
the covariance matrix between the measured values.
This covariance matrix provides information not only
about the measurement uncertainties, but also presents
the dependence structure of the calculated values. In
such a situation, performing univariate meta-analysis
for each measured feature separately would lead to the
loss of information related to the dependence structure
of measurement results. As a solution, the multivariate
meta-analysis has been developed in [5—7].

Multivariate model of random effects is a multi-
variate extension of the univariate model of random
effects, which is a widely spread statistical approach
for performing meta-analysis [5—7]. Using the methods
of frequentist statistics, the procedures for estimating
the parameters of the multivariate model of random
effects, i.e., the common mean vector and the hetero-
geneity matrix, were suggested in [5—7]. While the
DerSimonian and Laird approach was generalized as
the multivariate case in [5], the method based on the
restricted maximum likelihood approach was discus-
sed in [6]. Furthermore, the estimator derived by using
the method of moments was presented in [7].
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Another approach to estimate the parameters
of the multivariate model of random effects utilizes
Bayesian methods. Using the Laplace approximation,
Bayesian estimators for the parameters of a two-
dimensional model of random effects were given in [8].
Recently, Bayesian inference procedures for the pa-
rameters of the multivariate model of random effects
were developed in [9] by using the Jeffreys prior and
the Berger-Bernardo reference prior. The developed
approaches were also implemented in the R package
BayesMultMeta [10].

The rest of the paper is structured as follows.
In Section 2, we present the objective Bayesian in-
ference procedures derived for the parameters of the
multivariate model of random effects together with two
Metropolis-Hastings algorithms for generating samples
from the posterior distribution. Section 3 provides the
results of the simulation study where the convergence
properties of the two suggested algorithms are stu-
died, while concluding remarks are given in Section 4.

2. Bayesian inference procedures for the parameters of
the multivariate model of random effects
Let (x;,, U, be the reported results of the i-th

T
individual study for i=1,...,n, where x, = (xl.,l,...,xi’p)
is the vector consisting of the measurement results

- is the covariance
Jik=l...p

matrix with the squared uncertainties on the diagonal
and the covariance between the measurement results
as non-diagonal elements. The multivariate model
of random effects is defined by

for p features and U, = (u,.)jk)
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X, =u+A, +¢g; for i=1,..n, (1)

where A, and g, are independent, and p-dimensional
multivariate is normally distributed for i=1,...,n with
A, ~N,(0,¥) and & ~N, (0,U,). The vector p
denotes the common mean vector, which is the main
object of interest, while W is the heterogeneity mat-
rix, which determines the dark uncertainty and corre-
sponds to the additional uncertainty, which appears
when the results of several studies are pooled together.

Objective Bayesian inference procedures for the
parameters (u, W) of the multivariate model of ran-
dom effects (1) were derived in [9]. They are establi-
shed in the case of the model parameters endowed with

i=1

wIW,X~N, {(Zn“(\{wa )ljl

while the marginal posterior for W is expressed as

n(¥)

S (¥+U,)

i=1

‘I’|X
\/det

where

-1
X0 Sreu) | Seweu)' s ©
i=1 i=1
and n(¥)=m,(¥) when the Berger-Bernardo refe-
rence prior is used, and 7w(¥)=m,(¥) when the

Jeffreys prior is used.

For practical implementations, two Metropolis-
Hastings algorithms for generating samples from the
posterior distribution (4)-(6) were suggested in [9]. Let

_ oo 1 <& _ _
x ,E:] x, and P él (x,—x)(x,—x)" (1)

be the sample mean and the sample covariance matrix.
In the case of the Berger and Bernardo reference prior,
the two algorithms are given by (see [9]).

Algorithm A:
1. Initialization:
Choose the initial values p® and W for p and
W and set b = 0.
2. Generating new values of pn™ and P:
a. For given data X =(x,,...,x, ), generate p®

rsai)
wlX~t,|n-px,—=8§ |;
n(n—p)
b. Using data X and p™ drawn in step (a),
generate W™ from

from

‘P|u X ~ [W£n+p+12(x p. )(x uw))j

i=1

(¥+U) T Jeer(¥+U,)

the Berger-Bernardo reference prior and the Jeffreys
prior, which were obtained in [9] and are given by

T (1) = 1, (W) o \/det[G; [ﬁ(\pw[ V' (YU, )'jcp] Q)

i=1

and
. 0) =, (), () | S0 |3

respectively, where det (A) is the determinant of ma-
trix 4, the symbol ® denotes the Kronecker product,
and G, stands for the duplication matrix.

Let X =(x,,..,x,) be the observation matrix.
Then, the conditional posterior for p is given by
(see [9]),

xz{i(‘l’wi ) ” “

p__zlx ~x(¥) (\p+u,)‘[x,-;(xp)] (5)

3. Calculation of the Metropolis-Hastings ratio:
n(u(w),\lt(w) |X)q(p(”*‘)’\{l(b*]) |X)
n(u(bfl)’\lj(bfl) |X)Q(P-(w)

where ¢(.,.|X) is the joint density calculated by using
(a) and (b) of step 2.
4. Moving to the next state of Markov chain:

a. Generate U® from the uniform distribution
on [0,1];

b. If U® <min{l, MH"'!, then set p®= p»
and P® = P® (Markov chain moves to the new
state). Otherwise, set pu®= p®H and PO = Pe-H
(Markov chain remains in the previous state).

5. Return to step (2), increase b by 1, and repeat
until the sample of size B is accumulated.

MH" = :
) | X)

Algorithm B:
1. Initialization:
Choose the initial values p® and ¥© for p and
W and set b = 0.
2. Generating new values of u® and ¥™:
a. For given data X =(x,,..,x,), generate
Y from

Y| X ~1W,(n+p,(n-1)S);

b. Using data X and W™ drawn in step (a),
generate u™ from

1
u‘I’(w),X~Np(x,—‘P(w)j.
n

8 Ukrainian Metrological Journal, 2022, No 4, 7-11



0. Bodnar, T. Bodnar

3. Calculation of the Metropolis-Hastings ratio:

MH® = “(”(w)’q’(w) |X)q(u(”’1),\p(b*1> |X)

n(u(b—n’q,(b—l) ‘X)q(uw)’q,(w) |X)’

where ¢(.,.|X) is the joint density calculated by using
(a) and (b) of step 2.
4. Moving to the next state of Markov chain:

a. Generate U® from the uniform distribution
on [0,1];

b. If UY < min l,MH(b)}, then set u®@= p®
and W® = Y™ (Markov chain moves to the new
state). Otherwise, set p®= p®"H and PO» = Ppo-n
(Markov chain remains in the previous state).

5. Return to step (2), increase b by 1, and repeat
until the sample of size B is accumulated.

In Algorithms A and B, the symbol tp(d,a,A)
denotes the p-dimensional multivariate #-distribution
with d degrees of freedom, location vector a, and scale
matrix 4, while /W (d, ) stands for the p-dimensional
inverse Wishart distribution with d degrees of freedom
and parameter matrix 4. For the Jeffreys prior, changes
in Algorithms A and B are present in step 2 only.
In the case of Algorithm A, it is given by

2. Generating new values of p* and W™:

a. For given data X =(x,,...,x, ), generate p®

b. Using data X and p™ drawn in step (a),
generate ¥™ from

W™ X~ 1w, [n+p+2,2<x,- —u)(x, —W)T],
i=1
while for Algorithm B it becomes
2. Generating new values of ©" and W™:
a. For given data X =(x,,...,x, ), generate ¥
from
Y| X ~IW,(n+p+1,(n-1)S);

b. Using data X and W™ drawn in step (a),
generate u® from

IJ.|"P(W),X - Np [x’l\F(W)j'
n

3. Convergence properties of the constructed Markov
chains

In this section, we study the convergence pro-
perties of the constructed Markov chains using the two
algorithms presented in the previous sections. In each
case, four Markov chains of length 5000 observations
are constructed with burn-in period of 1000. The
data matrix X is drawn from (1) with the elements
of u being generated from the uniform distribution
on [1, 5]. The eigenvectors of W and U, i=1,...,n,
are simulated from the Haar distribution. Finally,

from the eigenvalues of W are drawn from the uniform
_ (n—l) distribution on [0.5, 2], while the eigenvalues of U,
plX~ Z, ”‘P"‘Lx’—n(n )S 5 i=1,...,n are generated from the uniform distribution
p on [1, 4]. We set pe {2,4} and n=10.
Chain 1, p; Chain 2, p, Chain 3, p; Chain 4, p;
3 5 H
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s ) g .
M H
H 2 H i
3 * N H
Chain 1, p; Chain 2, p, Chain 3, p; Chain 4, p;
s 1 H
3 g s | °
2 “i: F] H ﬂ
i ¥ 1 3

T T T 1
5000 10000 15000 20000

r T T T 1
0 5000 10000 15000 20000

Chain 1.y Chain 2. p;

Be05
8e05

de05
ae08

T T T 1 & v T T T 1
5000 10000 15000 20000 0 5000 10000 15000 20000

Chain 3. p; Chain 4. p;

LM

gl
H

0e+00

g/
H

0e+00  4e05  Beds

g
i

r T T T 1 r T T T 1
0 5000 10000 15000 20000 0 5000 10000 15000 20000

& v T T T 1 r T T T 1
0 5000 10000 15000 20000 0 5000 10000 15000 20000

Fig. 1. Rank plots of posterior draws from four chains in the case of the parameter u, for p = 2 and n = 10 under the Jeffreys prior (first and
second rows) and the Berger-Bernardo reference prior (third and fourth rows). The samples from the posteriors are drawn by Algorithm A

(first and third rows) and Algorithm B (second and fourth rows)
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Fig. 2. Rank plots of posterior draws from four chains in the case of the parameter p, for p = 4 and n = 10 under the Jeffreys prior (first and
second rows) and the Berger-Bernardo reference prior (third and fourth rows). The samples from the posteriors are drawn by Algorithm A
(first and third rows) and Algorithm B (second and fourth rows)

Table 1
Split- R estimates based on the rank normalization
Jeffreys, Algorithm A Jeffreys, Algorithm B | Reference, Algorithm A | Reference, Algorithm B
p=2 1.007623 1.007317 1.004983 1.002998
p=4 1.015984 1.051825 1.017928 1.011817

The results of the simulation study are shown
in Fig. 1 and 2, as well as in Table 1. To study the
convergence properties of the constructed Markov
chains, we analyse the rank plots of posterior draws
from fourAchains in the case of the parameter u, and
the split- R estimate based on the rank normalization
following the recent results in [11]. If the constructed
Markov chains possess good mixing properties, then
the rank plots should approximately correspond to the
histograms from the uniform distribution, while the
split—k estimate cannot be larger than 1.1.

As expected, better convergence properties of
the constructed Markov chains are observed when
p = 2. In this case, all calculated values of the split- R
estimate based on the rank normalization are below
1.01, and the recommended value is given in [11].
In addition, the plots in Fig. 1 can be better appro-
ximated by the uniform distribution in comparison to

the plots in Fig. 2. Although the situation is a bit worse
for p = 4, we still observe that all values of the split- R
estimates in Table 1 are below 1.1.

4. Conclusion

Multivariate meta-analysis is widely used in medi-
cine, physics, and chemistry when the multivariate
results of several studies should be pooled together.
While the first approaches perform the multivariate
meta-analysis by using the methods of the frequentist
statistics, Bayesian multivariate meta-analysis has
increased its popularity recently [8, 9]. In this paper,
we review the procedure recently suggested in [9] and
show how the samples from the posterior can be drawn
using two Metropolis-Hastings algorithms. Finally, the
convergence properties of the constructed Markov
chains are studied via simulations following the recent
approaches proposed in [11].
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AnHoTauis

Tlpu o6poO1i pe3ynbTaTiB (i3MUHUX, XiMiYHUX ab0 MEeIMKO-0iOJOTIYHUX EeKCHEPUMEHTIB 4YacTO TOBOIAMTHCS
00’emHYBaTH 0araTOBUMIpHI Pe3yIbTaTH ACKIIBKOX HOCIIIKEHb. Y 1IbOMY BMIIAAKY KOXHE OKpeMe JOCIiIKEHHSI BUKOHYE
BUMIpIOBaHHSI KiJIbKOX XapaKTepUCTUK OAHOYACHO, i, TAKUM YMHOM, HOro pe3yabTaT CKJIANA€ETbCs 3 KiIbKOX BUMIpSIHMX
3HaueHb, SIKi TOBIIOMJISIIOTBCSI pa30M i3 KoBapialliilHOIO MaTpulielo Mixk HuMu. Llg maTpuus Hagae iHgopMaliilo He Juiie
PO HEBM3HAYEHOCTI BUMIpIOBaHHS, ajle W TPENCTaB/s€ CTPYKTYPY 3aJIeKHOCTI MiX OOYMCIEHUMU 3HAYeHHSIMU. Tomy
3aCTOCYBaHHS OJHOMAKTOPHOrO MeTa-aHalli3y ISl KOXHOI BUMIpSIHOI XapaKTepPUCTUKU OKPEMO IPU3BOIMUTL 10 BTPATU
iHopmallil, MOB’43aHOI 3i CTPYKTYPOIO 3aJIEXKHOCTI Pe3yJIbTaTiB BUMiptoBaHHsI. OOIPYHTOBAHO MOXJIMBICTb YCYHEHHS 1IbOTO
HEelIOoJIiKy Ha OCHOBI 0araToBMMipHOTO MeTa-aHalli3y, y paMKax sIKOrO 3aCTOCOBYEThCSI OaratoakTopHa MOJEIb BUIIAAKOBUX
edexriB Ta baiteciBchki MeTomu. OOGroBoproIOThCs Mpoleaypu baiieciBcbKoro aHaidy, OTpyUMaHi 111 6araToBUMipHOI MO
BUITaJIKOBMX e(heKTiB, KOJU MapaMeTpu MO HadiJieHi JBoMa HeiH(opMaTUBHMUMU Tpiopamu: rpiopom beprepa-bepHapno
Ta nipiopom JIxeddpica. [IpencrasiaeHo asa anroputMu MeTtponosica-I'actiHrca s reHepatiii BUOipok 3 arocTepiopHOTo
pO3IoAily Ta IMpoaHali30BaHO iXHi BJACTUBOCTI 30i3KHOCTI 3a JOITOMOIrOI0 HyMepUYHUX MeToaiB. HaBeaeHO BUCHOBKU 11010
BJIACTUBOCTE KOHBEpPTeHIlii moOy1oBaHUX JaHIIOTiB MapkoBa, sIKi OyJu IOCTiIKeHi 3a JOMTOMOTOI0 HYMEpUUYHUX METO/IB.

KimouoBi ciioBa: 6araToBUMipHMiIT MeTa-aHalli3; 6araTOBMMipHa MOJE/Ib BUMAIKOBUX e(PEeKTiB; alroputM MeTporosica-
lacrinrca; panrose 300paxeHHs; oliHka split-hatR.
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