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Abstract

The estimation of the accuracy of the linear regression method used for measurements based on the GUM re-
commendations is considered. The impact of correlation and autocorrelation of the variable Y data together with
type A and type B uncertainties, not provided in statistical literature about regression methods, is discussed. The theore-
tical backgrounds are given. The simulated examples of determining the uncertainty bands of the regression line fitted
to the measured points with different cases of correlated values and absolute and relative uncertainties of type A and

type B of the dependent variable Y are considered.
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Introduction

The estimation of the accuracy of measurement
results and instrumentation used in national metrology
services, science, industry and many other fields is
now conducted according to the uncertainty terms
recommended in the international GUM Guide
[1—3]. It is also described in a few books and other
literature. In the literature on the linear regression
method, e.g. [4—5], the accuracy of its straight-line
parameters is statistically estimated only from the
measured data and from their random uncertainties
in the experiment. The impact of type B uncertainty
obtained from the Maximal Permissible Error (MPE)
of the used instruments on the uncertainty bands of the
straight-line, when a measurement result is obtained
using the regression method, and their use over an
acceptable period and conditions of the validation data
is not considered [4, 6—10]. Even in the latest research
works on the regression method based on the Bayes,
suggested for the new version of the GUM (GUM 2),
the impact of type B uncertainty on the accuracy of
the regression function was not separately considered.

The determination of equations for the borders
of the uncertainty bands of the regression line for
the uncorrelated y-ordinates of the measured points
was analysed earlier in [7—9]. The equations of the
regression line uncertainty of the autocorrelated and
correlated coordinates of the variable Y, based on
works [6—9], are presented below. In the estimation
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of the accuracy, the influence of type B uncertainty
is also included.

1. Linear regression method for correlated data of
variable Y

The linear regression method is used below for
a dependent random variable Y (x, y) to determine
a straight-line y=ax+5b and borders of its expan-
ded uncertainty band U .. This line is determined
according to the specified criterion for measuring
y,-ordinates (for i=1,...,n) of n tested points
0.(y, x;) — see Fig. 1, i.e.

y=ax+bztU, y(x). (1)
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Fig. 1. Regression line for points with measured y,-values
of variable ¥ and known x;-values

For most scientific and technological experiments,
it can be assumed that the measured results of y, for
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the dependent variable Y(x) are random, and the
x;-values (for i = 1, ..., n) of an independent va-
riable X(x) are known and precisely determined. Then
according to the GUM [1], the y,-values have combi-

ned uncertainties u(y,)=u; +uy, and u(x)=0.

If for every given Xx;, the y,-values are stable during
the experiment, it is enough to measure them once.
If they are randomly changed, then can be measu-
red repeatedly as (,, ..., ¥;, ... ¥,,) to find the best
estimators of the y,-values and their uncertainties u(y,).

To describe the accuracy of correlated values

Vi ..., V,, the covariance matrix is used:
uz(yl) P, ()u(,)
UY = : '.- : B (2)
P, u(,) u’(y,)

where p,; is the correlation coefficient of y,, y, of the
variable Y; and u(y,), u(y,) are their uncertainties,
i,j=1, ..n.

For a regression line of real data, the correlation
of the y-ordinates of close points is usually much
stronger than that of distant points. The elements with
the highest values of the correlation coefficients are
located around the main diagonal of the U, covariance
matrix, and other elements can be treated as equal to
zero.

For the least squares’ criterion of such a varia-
ble ¥, the multivariate Gauss distribution is used:

! 1
Yy — ——[Y -YT UMY -Y]|.(3
J(Y) (2n)n/zmexp( 2[ Y1 U/'[Y, ]j()

where Y =[y,, ... y,, ... »,]T is the n-dimensional vector
of the y,-ordinates of the measured points (observed
points), ¥, is the vector y, of their parallel projections
to the regression line in the 0Y-direction (fitted points),
U;' is the inverse of the covariance matrix.

A solution to the linear vector equation is:

Y,=aX,+bl=aX +b, 4)
where X, is the cut-off vector x; of the measured
points, 1=(1,...,1]" is the unit vector size of .

If the variable Y is only measured, then the target

function P=f(Y)— max is applied. This will occur for
a minimum of the criteria function SK(a, b)

SK (a,b) = —In(f (Y )) — min. &)

It is assumed that the sum of the normalized
squares of the distance of the measured points with
coordinates (x;, y;) for i=1,2,...n from the specified
points (x;, y,;) on a regression straight-line (Fig. 1) will
reach a minimum of zero of the sum of the squares
of the sub-derivatives after the parameters a and b
of this line. In general, i.e. when the values of both

coordinates are measured, the sets of the values y, and
X; may be autocorrelated, as well as the ordinates y, and
x; of the measured points may be correlated. Then the
determination of the linear regression method requires
two covariance matrices, U, and U, for both random
variables Y and X.

When the x;-values of the measured points do not
have a random dispersion, they are defined precisely,
and their uncertainty u(x,)=0 and the equation resul-
ting from criterion (5) is simplified, i.e.

SK=AY"U/AY =[Y,-YT'U;[Y,-Y].  (6)

Dependencies of the coordinates of points P, lying
on the regression line y=ax+b with abscissas x,=x,
and y,-ordinates are described by the vector equation

Y, =aX,+b. ()

The distance of the measured point @, from point
P, is equal to the coordinate differences between these
two points (see Fig. 1). In the regression method
with parallel projections of the measured points
O, in the Oy-direction on a designated straight-line,
the measured point Q, is therefore at the distance of
Y, —y;=ax;tb—y, from point P,.

The formulas of the regression line are simpler
due to the use of auxiliary parameters

S=1"v; 1= 3[U;],,. (7a)
p

S =X"U;1=1"U; X, (7b)

S, =X"UX=X"U; X, (7c)

S,=X"U/Y=Y"U/X, (7d)

S, =Y'U/1=1'U,'Y, (7e)

S, =Y'U'Y=Y"U;Y. (7)

Then for X, =X and ¥, =aX,+b equation (6)
takes the form:

SK=[aX+b-Y]' U,'[aX+b-Y]=
=a’S,, +2abS, —2aS, +b*S-2bS +S, .

®)

The condition for minimizing expression (8) as the
sum of the squares of the distance of » points Q, from
the regression line in the Oy-direction (Fig. 1) results
from the solution for the system of two equations for
its partial derivatives with respect to the parameters

a and b of the regression line, i.e. 95K =0, 5K =0:
da ob
aS,+bS, =S
: )
aS. +bS =S,
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Solving the system of equations (9) we get:

AV A
y—.x;/ :_’7’ (10a,b)
SS.—(S) A

L _S8,=8.5, A,
SS)OC - (AS)C)2 A ’

where and

A=SS_ - (S.).
The criterion SKy from (5) will be met by
parameters a i b where:

A, =SS, -5,

v

A, =S,S. S5

Xy

SKy =—aS,, —bS +S, . (11)
The borders of the uncertainty band U(y) lies
symmetrically on both sides of the regression line.
They will be determined considering the uncertainties
u, of slope a and the uncertainty u, of intercept 5. The
parameters a, b from formulas (10a, b) are correlated.
The partial derivatives of the regression straight-line
parameters are:
oS oS
c=—2=U,'X, d=—2=U,;'l.
oY oY
The sensitivity matrix for parameters a, b has the
form AB=[A, B] of the elements defined by:

(12a,b)

(_0a_Sc-Sd

_da g _S.d-Se
oY A

=—= . (13a,b
oY A ( )
The covariance matrix of parameters a, b follows
from the matrix equation for the variance propa-
gation, i.e.:
AU, A" AU,B'
AU,B" BU,B’
where p,, is the correlation coefficient between para-
meters a and b.

As the matrix U;' is symmetrical, U, =U,, and
U,U,'=U,'U, =1 — the unit matrix, then:

U,=ABU,AB" :{ } (14)

u> =AU, A" =§,
A
Sxx

u, =BU,B" = e

(14a—c)

b a

SX
puu, = AU, B" =—K.

The standard uncertainty of the regression line
y=ax+b for one-dimensional variable Y can be obtai-
ned from the formula:

dy 0 o o
w2, ((x)) = [a—za—ﬂ v, {a—za—ﬂ =

(15)
u’ p.uu, || x
— [x’1]|: a ab ;1 b .
Papl Uy u, 1
and after both multiplications:
1 S( s Y
W () =P +2xp uu, +ul =—+—| x—=| . (152)
(VX)) =u; Pttty TU, S A( S]

This equation determines type A uncertainty of
the variable Y as a function of two correlated quanti-
ties ax and b. In the GUM [1], the function of
combined uncertainty u(y) is the geometric sum of
the functions of type A and B uncertainties:

u(y) = \Jul, (y)+u3 (). (16)

Formula (16) is used, where the y,-coordinates of
all points are measured using the same instrument and
under the same conditions. In these cases, it is not
necessary to separately consider type B uncertainties
for y;, of each measured point, and u,,,(y)=u,(y)
The function of type B uncertainty, i.e. u,(y) in the
y-range of the regression line, shall be determined from
the Maximum Permissible Error, £, ., of the meter.
It is the standard deviation of uniformly distributed
errors with a width of +F, which is

uy (V) =u,(3) + (V=) Ene /3. (162)

In most cases of measurement

ug(¥y) Kug(y=y,)-

The parameters a, b of a regression line depend
on the y,-coordinates of »n measured points. The
effective number of the degrees of freedom is n-2.
The expanded uncertainty U, of a regression line,
e.g. when the confidence level is about P=0.95, is
determined multiplying the combined uncertainty u(y)
by the coverage factor k;,. For few n of points, the
Student’s 7-distribution is used, and

Upos = koostt(¥) =ty 95, v\ ”jh O+ uzzgy .

In rare cases, the y,-coordinates and some or all
controlled points are measured with different measures
and/or under different influenced conditions. Then the
sequence of numerical operations in determining the
expanded uncertainty is

practice

a7

u[_:Jui_—i—u;, i=1,...,l’l, (173)
Uy, =u,(ax+Db), (17b)
Uy (ax+b) = L0.95.n-2Uap (ax+Db). (17¢)

Therefore, equation (1) of the regression line with
its expanded uncertainty band finally is:

¥ = ax+b koo Jul, () + 12 (ax + b). (18)

The regression straight-line parameters for the
correlated values of the variable Y and their special
cases for the data of the uncorrelated values of the
variable Y are summarized together as Table 1 in [9].

2. Kinds of correlation for measured ordinates of
measured points
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2.1. Points with uncorrelated ordinates and equal un-
certainties

For the same value of absolute uncertainties u,=u
of y, of the measured points, the covariance matrix is:

U, =u’R,, (19)

where the correlator Ry, is a square symmetrical mat-
rix size nxn, elements of which are the correla-
tion coefficients p, between the values y, and y, for
iLj=1,.., n

In this case, for given correlation coefficients,
the equation for a regression line will always be the
same, since the values of the parameters a i b from
formulas (9a,b) do not depend on the uncertain-
ty u, but only on the correlator matrix. The regression
line for the points with given coordinates and the
same relative uncertainties y, of all points gets other
parameters than for the same absolute uncertainties.
For all unknown but equal absolute uncertainties u, the
estimator of the variance #” is defined as a minimum
of the distance squares of divided by n-2 degrees of
freedom:

;3 _ —any —bSy —Syy _
n—2

B —aX" R;l Y-bY" R,;11+YT R;IY

n-2 '

(20)

2.2. Correlation in a series of repeated measurements
of y; of single points with the same x;

In a series of m repeated measurements y,, ...,
Vs o Yin (kK =1, ... m) of the y-ordinate of a single
point with abscissa x,, the autocorrelation may occur.
With the same values of uncertainties 6, =0 =const
for each of the obtained y,-ordinate values and their
correlated results with the correlation coefficients,
from p,, for the adjacent points to p(i, m-1) for the
farthest points, the local covariance matrix size mxm
is obtained, given in equation (21)

Py po Pin-
(O S
in:cz Pn Py 1 o )
P « 15
L py,
[ Pim-t Po Pa 1]

In the covariance matrix U, the greatest positive
correlation occurs for the terms close to the mean
yi-value. Real type A uncertainty u, of this point is
greater than from the classical formula for m repeated
measurements of y,.

In estimating the uncertainty u,, of the mean
value of the results of y,, of the point with abscis-
sa x;, instead of the number of measurements m,
the effective number n,,<m must be used described
by the following formula [5, 6]:

. m (22)

n ., =

ieff m—1 >
m—k

1+22 — P
k=1 M

where m is the number of autocorrelated measure-
ments, p, is the value of the autocorrelation function
for the measurements of y,.

If the results of repeated measurements of the
tested point Q, are correlated with the coefficient
p, =p, then the effective number of measurements
of this series is:

m

v (22a)

nieff =
Table 1 shows an example of the effective
uncertainties u, for m-fold measurements of the
y;-ordinate of the tested point with abscissa x; and for
three values of the correlation coefficient p between
the measurements.
In each of the three series, m=20 measure-
ments with the same uncertainty o, were performed.

Table 1

Effective uncertainties of a measurement series of y, with three correlation coefficients

Correlation coefficient p p=0 p=0.5 p=1
Effective number of 2m
o My =——= 1.9 -1
measurements Moy Ny =m =20 m+1 Mgy =
Effective uncertainties of a O,
. 0.220. 0.72c. o,
series of m measurements of y, N iy ! ! !
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Table 1 shows that with the increase in the correlation
coefficient p, the standard uncertainty of the series
increases because the effective number of measure-
ments decreases from 20 to 1.9, and 1 for the
correlation coefficients of 0, 0.5 and 1, respectively.
The effective uncertainty for uncorrelated observations
will be about 5 times less than when they are fully
correlated.

2.3. Correlation between ordinates of various measured
points

Let us determine the covariance matrix describing
measurements of the variable Y points with correlated
ordinates. For example if y,, y; of two points Q(x,,
y), O(x;, y;) are measured with the same uncertainties
u;=u;=u=const, the autocorrelation function can also
be used. In matrix (21), the uncertainty ¢ of separate
measurements in a series is replaced by the effective
uncertainty u of the measured points. Autocorrelation
is a symmetrical function rapidly decreasing from the
maximum value to zero, and its initial arms can be
approximated with a straight line [5]. Usually, it is
enough to consider only the neighbouring values of
the measured ordinates y, |, y,, y,., of the points with
a known abscissa x,,, x,, x..,, i.e. p;=p and p,=0 for
i=2,...,n-1. For n equally remote points and of the
same uncertainties # and correlation coefficients p, the
covariance matrix Uy (23) with its size nxn gets all
correlation coefficients p,=p for i=1,...,n-1. When the
autocorrelation influence is negligible, the matrix U,
reduces to the main diagonal:

L p o Py Pr
pp 1
O o)
U. = k
' P
1 p
[Put - Pi pp 1]

The main equations for the regression straight-
line parameters and its uncertainty band for the cor-
related values of the variable Y are given together in
the left column of Table 2, and special cases for the
uncorrelated data of the variable Y are summarized
in the right column.

3. Numerical examples

Simulated numerical examples and their relations
will be provided.

3.1. Regressions line and uncertainty bands for the same
value of absolute or of relative uncertainty

Table 3 shows the coordinates of 10 measured
points with the same uncertainty values.

The values y, are the averages of multiple mea-
surements of the y,-ordinates of each point with
abscissa x;. To identify the effects of individual factors,
simplified cases will be analysed. It was assumed that
absolute uncertainties u#; or relative uncertainties 9J,,
of the y-ordinate values for all points are the same
and their abscissas x; are constant and known exactly.
To compare the results with the results obtained for
uncorrelated y,-ordinates, the same data of points were

Table 2
Parameters of regression line for autocorrelated and uncorrelated variable Y
Parameter*
measured: ¥ =[y,,....,,....,y,]" with uncertainty u,(y,)# 0;
known: X =[x,....x,,..x,]", u(x)=0
Variable Y Correlated Uncorrelated
) u} 0 u’ 0
. . U Pyttt . -1 :
Covariance matrix U, }' 1 U,= |, Uy =| :
and its U, = : » Uy 0 u? 0 u?’
inverse P thit, u, ’ ’
v, U;' only diagonal elements
Criterion SK =[Y-a X-b]U,'[Y-aX-b]— min SKzz:(yi—ax,—b)zulf2 — min
i=1
. SS.,—-S.S, . SS.-SS. A
Regression Slope a=—=—"2 =—% abscissa b=—2"—"F=—b,
line SS xx_(Sx) A SS xx_(Sx) A
parameters where A=SS _~(S,)’, A, =SS, -5S, A, =55 -SS,.
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1 n n » B 1 n n » B
A= Ez 2 vz, - "jzi)z A, 27‘12 *1 A= EZZ(& - xj)zui 2“12
i=1 j=1 i=1 j=1
S [L,...0U;',...,1]" = ('], Su?  or 287y
i=1 j i=1 i=1
g XU, = [, 10 X Z;x,u;z Y 87xy”
x i= i=1
Auxiliary s XU X ixzu_z iS_zxz -2
parameters xx Y it < i ii
S, YU, 1] =[1,..,11U;' ¥ 2 v ;s;zy;‘
. X"U,'Y=Y"U;'X > xyu? Y 8 xy!
i=1 i=1
_ = 2 2 = _
Syy Y'u'y ;J’i u; ;5,-2 where: u, =9,y,
AB =[A,B], [AB'], =[a,,b]
Sensifivit da _SU,'X-S.U;'[l,...1]" _da 1 Sx,-S,
ensitivity —= ,  =——=— ,
Matrix AB ¥ A o u A
_ob S UL -5 U' X b _db 18 -8x
oY A Yoy, u A
2
Covariance u, Papt U
matrix U U”b:[ i b:|:ABUYABT’ ”ZZE, “Z:S”, Pastally = ——.
rx o, Pastt My, u, A A A
v =_Path
Mgy =X+ 20Dty ", gy = (1= gy
Type A uncertainties Standard or
of )
regression u2b=l+£ Y R
line y=llx+b S A S min S > abmin S .
Expanded Uy = to.95,1-2tat
2 1 2=2
uz = ”u—’ u; =—+4 nu—x
> (%) BT
i=1 i=1
v = w’x
The same ) . Pasthalty == 0
uncertainty Matrix U, is replaced by ;(x,- —x)
u,=uof correlator R .
Yy, of all U,=u’R, and U,' =u R, where X =—2xi
points nig
1 _ 7\
w(x)=u'| —+ —n(x X)
BN,
i=1
Variance 5 _—aX RY-bY' R[]+ V" R'Y Ay xy, =Yy + Yy}
estimator n—2 ==l i=1 i=1
n—2
Type B uncertainty ug(¥)=uy(¥o) + (¥ = ¥o) Ep /\/§
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Table 3
Coordinates of measured points and equal absolute and relative uncertainties of y,
Symbol Coordinates of points (x,, y,) and uncertainties of y,
3, 1 2 3 4 5 6 7 8 9 10
», 2 1 4 3 6 5 8 7 10 11
u(y,) 0.5
3(y,) 5%
u,(y,) 0.01(1+y)%
Regression line for u=u: y=1.48x—0.067 | for 5, =8:y=0.978x—0.463

¥

R
|¥||>II;I||‘IJ”A df e
'51?: | '='-'U|3 GG'H'N(I}Z:”G,'. i,

il i
i

10

Fig. 2. a - Graphs of regression line with band of its expanded type A uncertainty; b — Gaussian probability density distributions (pdf-s)

with uncertainty #= 0.5 equal for all measured points and pdf-s ()

used as for Experiment I, which is given in our pa-
pers [7—9]. All that is illustrated by Fig. 2a, b.

Fig. 2a shows the line and its uncertainty band
(blue lines) determined by the linear regression me-
thod for the data from Table 2 when the correlation is
absent. It also shows the uncertainty of the ordinates
of the measured points (red lines). The figure shows
that 95% of the expanded uncertainty region changes
along the regression line such that its width decreases
from the initial value to a minimum near the centre
of the regression line, and then widens back to the
original initial size.

At the top in Fig. 2b, there are the graphs of
Gaussian probability density distributions (pdf — red

A

Y

o Measured points
y = 1,048x — 0,067
— 4U095p=0
— U095 p=0
T HU095 p=05

Straight line regression
absolute uncertainties

U095 p=05
_ +U095p=1

— y=0978x - 0463
— +%U 095 p=0
— ~%U095 p=0
+%U 095 p = 0,5

9
8 Straight line regression
7

6

5 = _%U 0,95 p =05

4

3

2

1

0

relative uncertainties

4%V 095 p=1
— —%U 095

of y-uncertainties along regression line in 3D view

curves) for the ordinates of the measured points
located on both sides of the regression line. The pdf
of the y,-ordinates are for 95% coverage with standard
deviation u = 0.5. Below, the probability density curves
for y around the regression line inside its uncertainty
band (blue 3D solid) are shown. In the middle of the
range of the regression line, pdf is the narrowest and
therefore is the highest. The maximum (narrowest) pdf
occurs for the minimum uncertainty bandwidth in the
middle part of the straight line. When moving away
from this maximum in the opposite directions, the
maximum value of the pdf function decreases, and the
distribution widens as the uncertainty band boundaries
move away from each other.

0.8 4 —Uyp=0 absolute uncertainties
Uy p=05
—Usp=1
—Uyp=0
- Uy p=05

—Usp=1

U

absolute uncertainties

0.7 absolute uncertainties

06 relative uncertainties
relative uncertainties

0.5 |- relative uncertainties
0.4

03

0.2

Y S—. — e T T

0 »

Fig. 3. a — Regression lines with expanded type A uncertainty bands; b — half height of bands of uncertainty U, for three values
of correlation coefficient p for series of 10 points from Table 2 measured 20 times each

18
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1.2
1.1 U
1
» -~ up Uy p=0
0.8 = Upos p=0 —Ugyp p=0,1
T Unos p=01  Ugp p=05
o : Uoos pP=05 = Uy p=1
0.6 T —Uoesp=1
P e
04 | — .
o3 [TEIImo——_____———mmmE
02
O R R P b e e N
»
0 »
1 2 3 4 6 7 s 3 —

Fig. 4. Uncertainty bands for regression line y=1.048x—0.067 for correlated and uncorrelated measurement points for three covariance
matrixes U, (21) for u= 0.5, p, = p fori=1, ..., 9, p =0, p =0.1, p =0.5 and p =1 with type B uncertainty

Fig. 3a shows two regression lines with their ex-
tended type A uncertainty bands *U,,; calculated
for the ordinates (x;, y;,) of 10 points from Table3
measured 20 times each with equal absolute uncer-
tainties #,=u (blue line y =1.048x — 0.067 runs above)
or with equal relative uncertainties 6,=90, (red line
y=0.978x—0.463 running below) and for three dif-
ferent correlation coefficients for y,.

Fig. 3b shows functions of their U,,. With the
increase in the correlation coefficient between the
results of repeated measurement observations, the
expanded uncertainty U, increases |5, 6].

In section 2.2, it was shown that the effective
number of observations of a sample with 20 mea-
surements for the autocorrelation coefficients 0, 0.5
and 1 decreased from 20 to 1.9 and to 1. The narrowest
uncertainty band is obtained for non-correlated
observations, i.e. for p=0. If such measurements are
made for the y,-ordinates of all 20 measurements
with the same uncertainty, then for the correlation
coefficient p=1, the uncertainty band of the regression
line is over four times wider than when the correlation
is absent. Negative coefficients p do not occur in these
measurements.

Measured points
~ classical regression
¥=1,048x-0,667
" regression with autocorrelation
-- y=1,048x-0,667
10 +Ug,5 uncorrelated data
—Uyp 95 uncorrelated data
8 +Uy 95 correlated data
—Up o5 correlated data

14 y

12

3.2. Influence of the correlation coefficient value bet-
ween y;-ordinates on the uncertainty band

Fig. 4 compares two regression lines and uncer-
tainty bands for the covariance matrix U, (21) with
parameters u,= 0.5, p=(0.6; 0.5; 0.4; 0.2; 0.1) and
p=0 for others. The regression line for correlated
points is y = 0.981x + 0.417.

There is a significant increase (over 30%) in
the width of an uncertainty band, when the points
described by the covariance matrix are autocorrelated.
On the other hand, type B uncertainty has a greater
impact on the width of a band determined without
correlation than on a band determined with correlation
because with the data of Experiment I considered here,
an increase in uncertainty by 1% is negligible.

The regression lines and their absolute uncertainty
bands for full correlation (p = 0.99=1) of the measured
y;-ordinates of the points with the covariance matrix
U, = «? [1] and when the correlation is absent (p=0)
are given in Fig. 5.

It is shown that with full correlation, i.e. for p=1,
the hyperbolic boundaries of the uncertainty band
become straight lines parallel to the regression line. The
band constriction in the middle of the regression line

X

»

0 3 2 3 4 5

»
6 7 8 9 10

Fig. 5. Regression lines and uncertainty bands for measurement points with uncertainties marked at uncorrelated
and correlated points with p =1 for covariance matrix U,
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Fig. 6. Uncertainties for uncorrelated and correlated y, of points with covariance matrix U, (21)

range disappear. The parameters of this regression line
do not change with the increases of equal coefficients
in the covariance matrix.

The graphs in Fig. 6 concern the courses of
uncertainty U, (type A) and uncertainty u, for the
regression line obtained for the same values of the
correlation coefficients between the y, -coordinates of
each of the repeatedly measured points of x, = const,
i.e. according to their covariance matrix (21). With
the presence of positive correlation, an increase in the
width of the uncertainty band is observed.

3.3. Comparison of regression lines for constant absolute
or relative uncertainties of measured y,

In Fig. 7a, b the regression lines with uncertainty
bands for the correlated and uncorrelated y;-ordinates,
measured with relative uncertainty 0=1%, were
compared.

For small and the same values of correlation
coefficients, such a straight line (Fig. 7a) deviates
from their direction for the same ordinates without

, M
u P, U U
U, (x)= g S zyl n | oa
p."lyz u}’] u}’z u}’z %
Oa

2.2 2
_ u,x; +2x,puu, +u,
ulx x +(x, +x,)p uu +u?
a’"17*2 1 2 pab a”’b b

oy. )
i:xi, %:1 and i=1.2.

Oa ob
For two points with ordinates y,, y,, variances u; ,

where

2 . .
u, and correlation coefficient p,,, are
2 2.2 2
u, =u,x +2x,p U Uy Uy,
(23a,b)
2 _ 2.2 2
u, =u,x; + 2x,p U, +U,
X, X, +(x, + +u,
_ U4 (X, +x,)p 1, +y (24)
p}ﬁyz uu :
YN

ué(x) :ujb +ué :(uj +c128125,)x2 +2(p,u,u, +ad,(uy, +83(b—y0)))x+u§ + (up, +53(b—y0))2.

correlation. Its slope was reduced from 0.978 to 0.869.
The boundaries of the uncertainty band slightly widen
for absolute uncertainties, and the boundaries of the
band for relative uncertainties remain practically
unchanged. The linearly increasing type B uncertainty
uy causes a disturbance of the symmetry of the limits
of the expanded uncertainty U, band in relation to
the centre of the regression line and a shift towards
higher values of the independent variable x. As a result,
this uncertainty bandwidth increases with x, for both
correlated and uncorrelated measuring points.

3.4. Correlation of the variable Y values within the
uncertainty band

Apart from the correlation between the y,-ordi-
nates of the measured points Q,(x;, y;), the y,-values
of points P,(x;, y;) on the regression line y = ax + b
(see Fig. 1) are also correlated with each other. This
is because the covariance matrix of its two points y, =
=ax, + b (for i = 1, 2) is determined by the variance
propagation equation:

Pl »
ob u, pab uauyb oa oa _
% l:pyly2 u,"l u)’z u: :l % %
ob ob 0b

(23)
u2x,x, + (X, +X,)p U, U, + uf}

If the regression line describes the characteristic of
the tested instrument, measurement device or process,
and under variable influencing conditions, the unknown
part of systematic errors cannot be eliminated, then
type B uncertainty up should also be evaluated. It is
assumed that the values of u; result from maximum
permissible errors E,, of the applied digital meters
as a linear function w,(y)=uy +36,(y—y,) [1], or
Ug(x) =ty +06,(b—y,)+dzax.

The combined uncertainty u, of the regression line
is larger than type A uncertainty u, and is described
by the formula

2.2 2
u,x, +2x,p,,u,u, +u,

(25)
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Fig. 7. Cases of equal relative uncertainty 6=1% for uncorrelated and correlated y, of points for covariance matrix Uy (21) with §=1%,
p,=0.1fori=1, ..., 9: a - regression lines; b — uncertainty U, together with type B uncertainty

Then with the influence of type B uncertainties,
the effective values of variances u., u;. and the
correlation coefficient p,., will be respectively:

o =ul +a’s u. =u; + Uy +3,(b—,)) (26a.b)

_ Pttty + aSB (uBO + 65 (b W ))

(26¢)

pabC
U,cUyc

Variances of the combined uncertainty in points
x; for i=1.2 (uy, =8, =6 for y,=0) are:
e, = (Ul +a*8°)x] +2x,(p yu,u, +ad (1+b))+

+u; +8(1+b)°.

27

Fig. 8 shows absolute U and relative uncertainty
bands 8, =U/y of the regression line. They are
obtained from (27) for absolute #=0.5 and relative
1% uncertainties, and the correlation coefficient p, =
=0.3 for i =I, , 9 with a linearly increasing
type B uncertainty u,, =8, =8 for y,=0.

In the uncertainty band narrowing area, the
uncertainty for the correlated y,-values increases
almost twice as compared to the uncorrelated y; with
the same absolute uncertainties, and the influence
of type B uncertainty makes the uncertainty bands
slightly asymmetric. The resulting relative uncertainties
decrease from several dozen percent at the beginning
of the regression line to less than 10% at the end of its
range. For relative uncertainties, the bands of correlated
and uncorrelated variables almost coincide. They are
slightly greater for the values of uncorrelated variables
than for correlated variables. The initial relative values
linearly increase to the level below 3, while relative
values do not exceed the level of 2—3%. The influence
of a linearly increasing type B uncertainty is practically
imperceptible.

The correlation coefficient Pg,,,, between the va-
riables y, and y, from (24) of the regression line,
considering the influence of type B uncertainty (27),
has the form

_ (”2 + azﬁé )X, X, + (X, + X, )(P Uy, + a0 5 (U + 0, (b_yo))"'ulf +(ugy +8, (b_yo))2

= 28
pC)’1Y2 U u ( )
G TGy

0.9 4

0.8

07 [ % B

NN = Uoes p=0 6=1% ~ Uy o5 p=0,3 6=1% e
06 | "z\\\\ = Upgs p=0 u=0,5 — Uj g5 p=0,3 u=0,5 7
‘\ F N — 8095 p=0u=0,5 .. §4cp=0,3 u=0,5 L~
05 | :"a \\\\ _ 8095 p=0 9=1% ... 8,95 p=0,3 6=1% ////
\ A:-: \\\\ ////
0d \v\ U E— -
\
Fig. 8. Absolute U and relative uncertainty bands &, =U/y of the regression line
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Due to the linear dependency of y from x, these
variables are fully correlated, which means that the
same correlation coefficient as (28) have both variables
x, and x,.

4. Conclusions

The type A uncertainty bands of the regression
line determined from measurements, similarly as for
uncorrelated variables, run hyperbolically, and their
cut-offs are symmetrical as to this line.

For the same value of relative uncertainties, the
limits of the uncertainty band of the regression line
are split hyperbolas with tangents diagonal to the
line. In the middle part of the band, there is a con-
striction of width § depending on the parameters of the
covariance matrix. With full correlation, i.e. for p=1,
the hyperbolic boundaries of the uncertainty band
become straight lines parallel to the regression line.

With the increase in the correlation coefficient
between the ordinates of the tested points, the slope
of the regression line decreases significantly. The
ordinates of points within the uncertainty band are
correlated more strongly if they are closer, and their

correlation coefficient tends to 1. This is applied to
the entire range of y.

The accuracy of the regression line parameters
improves with repeated measurements of the y-ordinate
value of each point with the same abscissa x;. The
results of observations in such a series are close to
each other, and it is necessary to consider the impact
of their autocorrelation. For a given point, the local
covariance matrix, or the formula for the effective
number of measurements can be used — see works of
Warsza and Zieba [4, 5].

Type B uncertainty is evaluated heuristically
from the maximum permissible error £ (MPB) of
the meter. For the uniform distribution of errors with
a range 2FE, the uncertainty u, is the standard devia-
tion E/V3. Usually, the error E linearly depends on
(y — »,) inside the measured range y__ — y, (e g. for
digital instruments).

The u, uncertainty is summed up geometrically
with type A uncertainty of the regression line obtai-
ned from measurements. The resultant combined and
expanded uncertainty bands widen with the increase
of y and x.

OniHka cMyr HeBHM3HAYE€HOCTI JiHilI perpecii A
KOpPeJbOBAHUX JAHMX 3MIHHOI Y 3 BHKOPHCTAHHSM

npasua GUM

3.J1. Bapwa', A. Nyxanbcbkuni?

! Mpomucrnosuli Hayko8o-0ociOHuUl iHcmumym asmomamus3auii ma sumiprosaHb PIAP-t (JocnidHuybka mepexa tukasiewicz),

Aleje Jerozolimskie 202, 02-486, Bapwasa, [llonbwa
zlw1936@gmail.com

2 llenmpanbHuli ogpic sumiptosaHb (GUM), Elektoralna 2, 00-137, Bapwasa, Monbwa

Jjacek.puchalski@gum.gov.pl

AnoTauis

Po3risiHyTO OlliHIOBaHHSI HEBU3HAUYEHOCTI BUMipIOBaHb MPU MOOYIOBI KaliOpyBaJIbHOI 3aJIEXKHOCTI 3aCO0iB BUMipIOBaHHS

3a JJOIIOMOTOI0 BUMIPIOBAJIbHOTO €KCITIEPUMEHTY, Y XOIi IKOTO BUMIPIOIOThCSI 3HAYEHHST 3MiHHOI ¥ CHiJIbHO 3 BUMipIOBaHHSIM
abcuucu X. CrarTsi 0OMEXY€ETbCS AOCIIKEHHSIM HAUMPOCTIIIOT0 BUIAJAKY — JIiHIIHOT perpecii, ajie 3 ypaXyBaHHSIM JTaHUX
HEBM3HAUYEHOCTI BUMipioBaHb TUIy A i Tury B Ta 3 ypaxyBaHHSM Kopessuii i aBTOKopesuii Mixk HUMU. OTpuMaHO
BUpAa3u UIS CYMapHOI CTaHZAPTHOI Ta PO3MIMPEHOI HEBU3HAYEHOCTEH Y KOXKHIM TOYI BUMipIoBaHb. 3aJIeXKHICTh BiIXWICHb
BUMIpSIHUX 3HaueHb opauHaTth Y Big 3HayeHb abcuucu X sBjsie coO0I0 TOCiIKyBaHy CMyry HeBM3HauyeHocTi. HaBeneHo
OCHOBHI CIiBBIIHOIIEHHS UIsSI BUMANKYy BiJICYTHOCTI HEBM3HAu€HOCTI BUMiploBaHHsI abcuucu X. Po3riasiHyTo BuUmamok
HAasIBHOCTi TOYOK i3 HEKOpEJIbOBAHMMHU OpAMHATAMU Ta OAHAKOBUMM HEBM3HAUEHOCTSIMU. [loCIiIKeHO Kopesslilo B cepil
MOBTOPHUX BUMIpIOBAaHb B OAHINM TOYLIl OpAMHATH 3 OAHUM i TUM CaMUM 3Ha4YeHHsIM aOcuucu. HaBeaeHO criBBiIHOIIEHHS
IS0 OLHIOBAaHHSI HEBM3HAYEHOCTI BUMIipIOBAaHb 3a HASIBHOCTI KOpEJLii MiXX OpIMHATAMM Pi3HUX BUMIPSHUX TOYOK.
PosrisinyTo 3mMoneniboBaHi uucesbHi Npukiaad. Po3paxoBaHo JiHiIO perpecii Ta ¢CMyru HEBU3HAYEHOCTI JJISI OAHAKOBOTO
3HAYeHH$ a0COJIIOTHOI ab0 BiIHOCHOT HEBM3HAYEHOCTI. JJocikeHo BIUIUB 3HaUYE€HHs KoedilieHTa Kopessiii A opAruHaT
Ha Jiana3oH HeBU3HayeHoCTi. [TopiBHAHO JiHil perpecii misi MOCTIMHUX aOCOMIOTHUX a0O0 BiIIHOCHUX HEBM3HAYEHOCTEM
BUMIpSIHUX 3HaY€Hb OpAMHATU. PO3IJISIHYTO MpUKIal HASBHOCTI KOpEJsLlil 3HaYeHb 3MiHHOI Y B Jliania30Hi HEBU3HAYEHOCTi.

KiniouoBi ciioBa: BUMipIOBaHHS; aBTOKOPEJISLList; JIiHis perpecii; cMyrn HeBU3HAUYEHOCTiI TUIly A Ta Tumy B.
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