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Estimation of the uncertainty bands of regression line for correlated data of variable Y using the GUM rules

Introduction
The estimation of the accuracy of measurement 

results and instrumentation used in national metrology 
services, science, industry and many other fields is 
now conducted according to the uncertainty terms 
recommended in the international GUM Guide 
[1−3]. It is also described in a few books and other 
literature. In the literature on the linear regression 
method, e.g. [4−5], the accuracy of its straight-line 
parameters is statistically estimated only from the 
measured data and from their random uncertainties 
in the experiment. The impact of type B uncertainty 
obtained from the Maximal Permissible Error (MPE) 
of the used instruments on the uncertainty bands of the 
straight-line, when a measurement result is obtained 
using the regression method, and their use over an 
acceptable period and conditions of the validation data 
is not considered [4, 6−10]. Even in the latest research 
works on the regression method based on the Bayes, 
suggested for the new version of the GUM (GUM 2), 
the impact of type B uncertainty on the accuracy of 
the regression function was not separately considered.

The determination of equations for the borders 
of the uncertainty bands of the regression line for 
the uncorrelated y-ordinates of the measured points 
was analysed earlier in [7−9]. The equations of the 
regression line uncertainty of the autocorrelated and 
correlated coordinates of the variable Y, based on 
works [6−9], are presented below. In the estimation 

of the accuracy, the influence of type B uncertainty 
is also included.

1. Linear regression method for correlated data of 
variable Y

The linear regression method is used below for 
a dependent random variable Y (x, y ) to determine 
a straight-line y = ax + b and borders of its expan-
ded uncertainty band ±U y.95 . This line is determined 
according to the specified criterion for measuring  
yi - ordinates (for i = 1, ..., n) of n tested points  
Qi ( yi,  xi ) – see Fig. 1, i.e.:

          y ax b U xy� � �
.

( ).
95   (1)

For most scientific and technological experiments, 
it can be assumed that the measured results of yi for 
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Fig. 1. Regression line for points with measured yi -values  
of variable Y and known xi -values
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the dependent variable Y (x) are random, and the  
xi -values (for i = 1, ..., n) of an independent va-
riable X(x) are known and precisely determined. Then 
according to the GUM [1], the yi -values have combi- 

ned uncertainties u y u ui iA iB( ) ,� �2 2  and u (xi ) = 0. 

If for every given xi , the yi -values are stable during 
the experiment, it is enough to measure them once. 
If they are randomly changed, then can be measu-
red repeatedly as (yi1 , ..., yij , ... yim ) to find the best 
estimators of the yi -values and their uncertainties u( yi ).

To describe the accuracy of correlated values  
yi , …, yn, the covariance matrix is used:
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where ρyij is the correlation coefficient of yi , yj of the 
variable Y ; and u( yi ), u( yj ) are their uncertainties,  
i, j = 1, …n.

For a regression line of real data, the correlation 
of the y - ordinates of close points is usually much 
stronger than that of distant points. The elements with 
the highest values of the correlation coefficients are 
located around the main diagonal of the UY covariance 
matrix, and other elements can be treated as equal to 
zero.

For the least squares’ criterion of such a varia- 
ble Y, the multivariate Gauss distribution is used:

(3) f
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where Y =[ y1, … yi , … yn ]T is the n-dimensional vector 
of the yi -ordinates of the measured points (observed 
points), Yp is the vector yip of their parallel projections 
to the regression line in the 0Y-direction (fitted points),   
UY
-1  is the inverse of the covariance matrix.

A solution to the linear vector equation is:

     Y X X b,p p p� � � �a b a1   (4)

where X p is the cut-off vector xi of the measured 
points, 1 1 1 T=[ ],...,  is the unit vector size of n.

If the variable Y is only measured, then the target 
function P = f (Y ) → max is applied. This will occur for 
a minimum of the criteria function SK( a, b)

     SK a,b f   ( ) ln( ( )) min.� � �Y   (5)

It is assumed that the sum of the normalized 
squares of the distance of the measured points with 
coordinates (xi , yi ) for i = 1,2, ... n from the specified 
points (xi , ypi ) on a regression straight-line (Fig. 1) will 
reach a minimum of zero of the sum of the squares 
of the sub-derivatives after the parameters a and b 
of this line. In general, i.e. when the values of both 

coordinates are measured, the sets of the values yi and 
xi may be autocorrelated, as well as the ordinates yi and 
xi of the measured points may be correlated. Then the 
determination of the linear regression method requires 
two covariance matrices, UY and UX, for both random 
variables Y and X.

When the xi -values of the measured points do not 
have a random dispersion, they are defined precisely, 
and their uncertainty u(xi ) = 0 and the equation resul-
ting from criterion (5) is simplified, i.e.

    SK � � � � � �Y U Y Y Y U Y YY
-

p Y
-

p
T 1

[ ] [ ].
T 1  (6)

Dependencies of the coordinates of points Pi lying 
on the regression line y=ax+b with abscissas xpi=xi   
and ypi -ordinates are described by the vector equation

  Y X bp p� �a .    (7)

The distance of the measured point Qi from point 
Pi is equal to the coordinate differences between these 
two points (see Fig. 1). In the regression method 
with parallel projections of the measured points  
Qi in the 0y-direction on a designated straight-line, 
the measured point Qi is therefore at the distance of  
ypi – yi = axi+ b – yi from point Pi .

The formulas of the regression line are simpler 
due to the use of auxiliary parameters

      S ij
j

n

i

n

� �
��
��1 1T -1 -1

[ ]U UY Y
11

,   (7a)

       Sx = =X U U XY Y
T T

,
-1 -11 1   (7b)

      Sxx = =X U X X U XY Y
T -1 T -1

,   (7c)

      Sxy = =X U Y Y U XY Y
T -1 T -1

,   (7d)

        Sy = =Y U U YY Y
T -1 T -11 1 ,   (7e)

       Syy = =Y U Y Y U YY Y
T -1 T -1

.   (7f)

Then for X Xp =  and Y X bp p� �a  equation (6) 
takes the form:

  SK a a

a S abS aS b S bS Sxx x xy y yy

� � � � �

� � � � �

�
[ ] [ ]=

=

TX b Y U X b YY
1

2 2
2 2 2 .

 (8)

The condition for minimizing expression (8) as the 
sum of the squares of the distance of n points Qi from 
the regression line in the 0y-direction (Fig. 1) results 
from the solution for the system of two equations for 
its partial derivatives with respect to the parameters  

a and b of the regression line, i.e. �
�

�
SK
a

0,  �
�

�
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0 :
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��
.   (9)
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Solving the system of equations (9) we get:

a
SS S S
SS S

xy x y

xx x

a�
�

�
�
�
� ( )

2
; b

S S S S
SS S

y xx x xy

xx x

b�
�

�
�
�
� ( )

2
, (10 a, b)

where � � �a xy x ySS S S ,  � � �b y xx x xyS S S S  and
� � �SS Sxx x ( )

2
.  

The criterion SKMIN from (5) will be met by 
parameters a i b where:

      SK aS bS Sxy y yyMIN
� � � � .  (11)

The borders of the uncertainty band U( y) lies 
symmetrically on both sides of the regression line. 
They will be determined considering the uncertainties 
ua of slope a and the uncertainty ub of intercept b. The 
parameters a, b from formulas (10a, b) are correlated. 
The partial derivatives of the regression straight-line 
parameters are:

    c
Y

U XY�
�

�
� �Sxy 1

,  d
Y

UY�
�

�
� �Sy 1 1.    (12 a, b)

The sensitivity matrix for parameters a, b has the 
form AB = [ A, B ] of the elements defined by:

A
Y

c d
�
�
�

�
�
�

a S Sx ;  B
Y

d c
�
�
�

�
�
�

b S Sxx x .  (13 a, b)

The covariance matrix of parameters a, b follows 
from the matrix equation for the variance propa-
gation, i.e.:

    U ABU AB
AU A AU B
AU B BU BY

Y Y

Y Y
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T
,

T T

T T
 (14)

where ρab is the correlation coefficient between para-
meters a and b.

As the matrix UY
-1  is symmetrical, U = UY Y

T
,  and    

U U U UY Y Y Y
� �� � �1 1 I    the unit matrix, then:

  u S
a
2 � �
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T
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         u
S
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T
.  (14 a – c)

The standard uncertainty of the regression line  
y = ax+b for one-dimensional variable Y can be obtai-
ned from the formula:
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and after both multiplications:
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S
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This equation determines type A uncertainty of 
the variable Y as a function of two correlated quanti- 
ties ax and b. In the GUM [1], the function of 
combined uncertainty u( y) is the geometric sum of 
the functions of type A and B uncertainties:

        u y u y u yab B( ) ( ) ( ).� �2 2   (16)

Formula (16) is used, where the yi -coordinates of 
all points are measured using the same instrument and 
under the same conditions. In these cases, it is not 
necessary to separately consider type B uncertainties 
for yi of each measured point, and u y u yregA ab( ) ( ).=  
The function of type B uncertainty, i.e. uB ( y) in the 
y -range of the regression line, shall be determined from 
the Maximum Permissible Error, Emax %, of the meter. 
It is the standard deviation of uniformly distributed 
errors with a width of ±E , which is

  u y u y y y EB B( ) ( ) ( ) .
max

� � �
0 0

3     (16 а)

In most cases of measurement practice 
u y u y yB B( ) ( ).

0 0
 −

The parameters a, b of a regression line depend 
on the yi -coordinates of n measured points. The 
effective number of the degrees of freedom is n-2. 
The expanded uncertainty UP of a regression line, 
e.g. when the confidence level is about P = 0.95, is 
determined multiplying the combined uncertainty u(y) 
by the coverage factor k0.95 . For few n of points, the 
Student’s t-distribution is used, and

   U k u y t u y un ab By0 95 0 95 0 95 2

2 2

. . . ,
( ) ( ) .� � ��  (17)

In rare cases, the yi -coordinates and some or all 
controlled points are measured with different measures 
and/or under different influenced conditions. Then the 
sequence of numerical operations in determining the 
expanded uncertainty is

      u u ui Ai Bi� �2 2
,  i = 1, …,  n, (17a)

  u u ax bab ab� �( ),   (17b)

   U ax b t u ax by n ab( ) ( ).
. ,

� � ��0 95 2
 (17c)

Therefore, equation (1) of the regression line with 
its expanded uncertainty band finally is:

  y ax b k u y u ax bab b� � � � �
0 95

2 2

.
( ).( )  (18)

The regression straight-line parameters for the 
correlated values of the variable Y and their special 
cases for the data of the uncorrelated values of the 
variable Y are summarized together as Table 1 in [9].

2. Kinds of correlation for measured ordinates of 
measured points
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2.1. Points with uncorrelated ordinates and equal un-
certainties

For the same value of absolute uncertainties ui = u 
of yi of the measured points, the covariance matrix is:

       U RY Y= u2
,   (19)

where the correlator RY is a square symmetrical mat-
rix size n  x  n, elements of which are the correla-
tion coefficients ρyij  between the values yi and yj for  
i,  j  =  1,  …  , n.

In this case, for given correlation coefficients,  
the equation for a regression line will always be the 
same, since the values of the parameters a i b from 
formulas (9a,b) do not depend on the uncertain- 
ty u, but only on the correlator matrix. The regression 
line for the points with given coordinates and the 
same relative uncertainties yi of all points gets other 
parameters than for the same absolute uncertainties. 
For all unknown but equal absolute uncertainties u, the 
estimator of the variance ˆ 2 is defined as a minimum 
of the distance squares of divided by n-2 degrees of 
freedom:

      u u
aS bS S

n
a b

n

xy y yy2 2

1 1 1

2

2

 �
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�
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�
� �
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� � �X R Y Y R Y R YY Y Y
T T T1+

.

  
    (20)

2.2. Correlation in a series of repeated measurements 
of yi of single points with the same xi

In a series of m repeated measurements yi1 , …,  
yik , … yim  (k =1, … m) of the yi -ordinate of a single 
point with abscissa xi , the autocorrelation may occur. 
With the same values of uncertainties σik = σ = const 
for each of the obtained yik -ordinate values and their 
correlated results with the correlation coefficients, 
from ρi1 for the adjacent points to ρ(i, m-1) for the 
farthest points, the local covariance matrix size m x m 
is obtained, given in equation (21)
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      (21)

In the covariance matrix Uyi , the greatest positive 
correlation occurs for the terms close to the mean  
yi -value. Real type A uncertainty uyi of this point is 
greater than from the classical formula for m repeated 
measurements of yi .

In estimating the uncertainty uAi of the mean 
value of the results of yim of the point with abscis-
sa xi , instead of the number of measurements m,  
the effective number n ieff <  m must be used described 
by the following formula [5, 6]:

  n m
m k

m

ieff

ik
k

m�
�

�

�

�

�1 2

1

1

�
,   (22)

where m is the number of autocorrelated measure-
ments, ρik is the value of the autocorrelation function 
for the measurements of yik .

If the results of repeated measurements of the 
tested point Qi are correlated with the coefficient 
� �ik � ,  then the effective number of measurements 
of this series is:

  n m
mieff � � �1 1�( )

.  (22a)

Table 1 shows an example of the effective 
uncertainties uyi for m-fold measurements of the  
yi -ordinate of the tested point with abscissa xi and for 
three values of the correlation coefficient ρ between 
the measurements.

In each of the three series, m = 20 measure-
ments with the same uncertainty σi were performed. 

u

Table 1

Effective uncertainties of a measurement series of yi with three correlation coefficients

Correlation coefficient ρ ρ=0 ρ=0.5 ρ=1

Effective number of 
measurements ieffn 20ieffn m= =

2 1 9
1ieff

mn
m

= =
+

. 1ieffn =

Effective uncertainties of a 
series of m measurements of yi

i

ieffn
σ

0.22σi 0.72σi  σi 
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Table 1 shows that with the increase in the correlation 
coefficient ρ, the standard uncertainty of the series 
increases because the effective number of measure-
ments decreases from 20 to 1.9, and 1 for the 
correlation coefficients of 0, 0.5 and 1, respectively. 
The effective uncertainty for uncorrelated observations 
will be about 5 times less than when they are fully 
correlated.

2.3. Correlation between ordinates of various measured 
points

Let us determine the covariance matrix describing 
measurements of the variable Y points with correlated 
ordinates. For example if yi , yj of two points Q ( xi , 
yi ), Q ( xj , yj ) are measured with the same uncertainties 
ui = uj = u = const, the autocorrelation function can also 
be used. In matrix (21), the uncertainty σ of separate 
measurements in a series is replaced by the effective 
uncertainty u of the measured points. Autocorrelation 
is a symmetrical function rapidly decreasing from the 
maximum value to zero, and its initial arms can be 
approximated with a straight line [5]. Usually, it is 
enough to consider only the neighbouring values of 
the measured ordinates yi-1 , yi , yi+1 of the points with 
a known abscissa xi-1 , xi , xi+-1 , i.e. ρ1 = ρ and ρk = 0 for 
i = 2, …, n-1. For n equally remote points and of the 
same uncertainties u and correlation coefficients ρ, the 
covariance matrix UY (23) with its size n x n gets all 
correlation coefficients ρk=ρ for i = 1, ..., n-1. When the 
autocorrelation influence is negligible, the matrix UY 
reduces to the main diagonal:
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The main equations for the regression straight-
line parameters and its uncertainty band for the cor-
related values of the variable Y are given together in 
the left column of Table 2, and special cases for the 
uncorrelated data of the variable Y are summarized  
in the right column.

3. Numerical examples
Simulated numerical examples and their relations 

will be provided.
3.1. Regressions line and uncertainty bands for the same 
value of absolute or of relative uncertainty

Table 3 shows the coordinates of 10 measured 
points with the same uncertainty values.

The values yi are the averages of multiple mea-
surements of the yi -ordinates of each point with 
abscissa xi . To identify the effects of individual factors, 
simplified cases will be analysed. It was assumed that 
absolute uncertainties ui or relative uncertainties δui 

of the y-ordinate values for all points are the same 
and their abscissas xi are constant and known exactly. 
To compare the results with the results obtained for 
uncorrelated yi -ordinates, the same data of points were 

Parameter*
measured: T

1[ ,..., ,..., ]Y i ny y y=  with uncertainty  0;i iu y ≠( )

              known: T
1[ ,..., ,..., ]i nx x x=X ,   ui(xi) = 0

Variable Y Correlated Uncorrelated

Covariance matrix UY 
and its 
inverse

2
1 1 1

2
1 1
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u u u
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Regression 
line 

parameters

Slope
 

2 ,xy x y a

xx x

SS S S
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2 ,y xx x xy b
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2 ,xx xSS S∆ = −( )  

,a xy x ySS S S∆ = −
 

.b y xx x xyS S S S∆ = −

Table 2

Parameters of regression line for autocorrelated and uncorrelated variable Y
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Auxiliary 
parameters
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used as for Experiment I, which is given in our pa- 
pers [7−9]. All that is illustrated by Fig. 2a, b.

Fig. 2a shows the line and its uncertainty band 
(blue lines) determined by the linear regression me-
thod for the data from Table 2 when the correlation is 
absent. It also shows the uncertainty of the ordinates 
of the measured points (red lines). The figure shows 
that 95% of the expanded uncertainty region changes 
along the regression line such that its width decreases 
from the initial value to a minimum near the centre 
of the regression line, and then widens back to the 
original initial size.

At the top in Fig. 2b, there are the graphs of 
Gaussian probability density distributions (pdf – red 

Table 3

Coordinates of measured points and equal absolute and relative uncertainties of yi

Symbol Coordinates of points ( xi , yi ) and uncertainties of yi

xi 1 2 3 4 5 6 7 8 9 10

yi 2 1 4 3 6 5 8 7 10 11

u( yi ) 0.5

δ( yi ) 5%

uB( yi ) 0.01(1+y)%

Regression line for ui=u:  y =1.48x – 0.067 for δui= δ: y = 0.978x – 0.463

Fig. 2. a − Graphs of regression line with band of its expanded type A uncertainty; b − Gaussian probability density distributions (pdf-s) 
with uncertainty u = 0.5 equal for all measured points and pdf-s f ( y) of y -uncertainties along regression line in 3D view

curves) for the ordinates of the measured points 
located on both sides of the regression line. The pdf 
of the yi -ordinates are for 95% coverage with standard 
deviation u = 0.5. Below, the probability density curves 
for y around the regression line inside its uncertainty 
band (blue 3D solid) are shown. In the middle of the 
range of the regression line, pdf is the narrowest and 
therefore is the highest. The maximum (narrowest) pdf 
occurs for the minimum uncertainty bandwidth in the 
middle part of the straight line. When moving away 
from this maximum in the opposite directions, the 
maximum value of the pdf function decreases, and the 
distribution widens as the uncertainty band boundaries 
move away from each other.

Fig. 3. a − Regression lines with expanded type A uncertainty bands; b − half height of bands of uncertainty UA for three values  
of correlation coefficient ρ for series of 10 points from Table 2 measured 20 times each
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Fig. 3a shows two regression lines with their ex-
tended type A uncertainty bands ±U0.95 calculated  
for the ordinates (xi, yi ) of 10 points from Table 3 
measured 20 times each with equal absolute uncer-
tainties ui = u (blue line y =1.048 x – 0.067 runs above) 
or with equal relative uncertainties δui = δu (red line 
y = 0.978 x – 0.463 running below) and for three dif-
ferent correlation coefficients for yi .

Fig. 3b shows functions of their U0.95 . With the 
increase in the correlation coefficient between the 
results of repeated measurement observations, the 
expanded uncertainty UA increases [5, 6].

In section 2.2, it was shown that the effective 
number of observations of a sample with 20 mea-
surements for the autocorrelation coefficients 0, 0.5 
and 1 decreased from 20 to 1.9 and to 1. The narrowest 
uncertainty band is obtained for non-correlated 
observations, i.e. for ρ = 0. If such measurements are 
made for the yi -ordinates of all 20 measurements 
with the same uncertainty, then for the correlation 
coefficient ρ = 1, the uncertainty band of the regression 
line is over four times wider than when the correlation 
is absent. Negative coefficients ρ do not occur in these 
measurements.

3.2. Influence of the correlation coefficient value bet-
ween yi -ordinates on the uncertainty band

Fig. 4 compares two regression lines and uncer-
tainty bands for the covariance matrix UY (21) with 
parameters ui =  0.5, ρ = (0.6; 0.5; 0.4; 0.2; 0.1) and 
ρ = 0 for others. The regression line for correlated 
points is y = 0.981 x + 0.417.

There is a significant increase (over 30%) in 
the width of an uncertainty band, when the points 
described by the covariance matrix are autocorrelated. 
On the other hand, type B uncertainty has a greater 
impact on the width of a band determined without 
correlation than on a band determined with correlation 
because with the data of Experiment I considered here, 
an increase in uncertainty by 1% is negligible.

The regression lines and their absolute uncertainty 
bands for full correlation (ρ = 0.99≈1) of the measured 
yi -ordinates of the points with the covariance matrix 
UY = u2 [1] and when the correlation is absent (ρ = 0) 
are given in Fig. 5.

It is shown that with full correlation, i.e. for ρ = 1, 
the hyperbolic boundaries of the uncertainty band 
become straight lines parallel to the regression line. The 
band constriction in the middle of the regression line 

Fig. 4. Uncertainty bands for regression line y = 1.048x – 0.067 for correlated and uncorrelated measurement points for three covariance 
matrixes UY (21) for u= 0.5, ρk = ρ for i=1, …, 9, ρ = 0, ρ = 0.1, ρ = 0.5 and ρ = 1 with type B uncertainty

Fig. 5. Regression lines and uncertainty bands for measurement points with uncertainties marked at uncorrelated  
and correlated points with ρ ≈ 1 for covariance matrix UY
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range disappear. The parameters of this regression line 
do not change with the increases of equal coefficients 
in the covariance matrix.

The graphs in Fig. 6 concern the courses of 
uncertainty Uab (type A) and uncertainty uB for the 
regression line obtained for the same values of the 
correlation coefficients between the yik -coordinates of 
each of the repeatedly measured points of xi = const, 
i.e. according to their covariance matrix (21). With 
the presence of positive correlation, an increase in the 
width of the uncertainty band is observed.

3.3. Comparison of regression lines for constant absolute 
or relative uncertainties of measured yi

In Fig. 7a, b the regression lines with uncertainty 
bands for the correlated and uncorrelated yi -ordinates, 
measured with relative uncertainty δ = 1%, were 
compared.

For small and the same values of correlation 
coefficients, such a straight line (Fig. 7a) deviates 
from their direction for the same ordinates without 

Fig. 6. Uncertainties for uncorrelated and correlated yi of points with covariance matrix UY (21) 

correlation. Its slope was reduced from 0.978 to 0.869. 
The boundaries of the uncertainty band slightly widen 
for absolute uncertainties, and the boundaries of the 
band for relative uncertainties remain practically 
unchanged. The linearly increasing type B uncertainty 
uB causes a disturbance of the symmetry of the limits 
of the expanded uncertainty U0.95 band in relation to 
the centre of the regression line and a shift towards 
higher values of the independent variable x. As a result, 
this uncertainty bandwidth increases with x, for both 
correlated and uncorrelated measuring points.

3.4. Correlation of the variable Y values within the 
uncertainty band

Apart from the correlation between the yi -ordi-
nates of the measured points Qi (xi , yi ), the yi  -values 
of points Pi ( xi , yi ) on the regression line y = ax + b 
(see Fig. 1) are also correlated with each other. This 
is because the covariance matrix of its two points yi = 
= axi + b  (for i = 1, 2) is determined by the variance 
propagation equation:
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(24)

If the regression line describes the characteristic of 
the tested instrument, measurement device or process, 
and under variable influencing conditions, the unknown 
part of systematic errors cannot be eliminated, then 
type B uncertainty uB should also be evaluated. It is 
assumed that the values of uB result from maximum 
permissible errors Emax of the applied digital meters 
as a linear function u y u y yB B B( ) ( )� � �0 0� [1], or 
u x u b y axB B B B( ) ( )� � � �0 0� � .

The combined uncertainty uc of the regression line 
is larger than type A uncertainty uab and is described 
by the formula

(23)

u x u u u a x u u a u b yC ab B a B ab a b B B B
2 2 2 2 2 2 2

0 0
2( ) ( ) ( ( ( )))� � � � � � � �� � � � xx u u b yb B B� � � �2

0 0

2( ( ))� . (25)
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Fig. 7. Cases of equal relative uncertainty δ=1% for uncorrelated and correlated yi of points for covariance matrix UY (21) with δ =1%, 
ρk =0.1 for i = 1, …, 9: a − regression lines; b − uncertainty U0.95 together with type B uncertainty

Then with the influence of type B uncertainties, 
the effective values of variances uaC

2 , ubC
2  and the 

correlation coefficient ρabC , will be respectively:
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Variances of the combined uncertainty in points 
xi for i =1.2 ( uB B0 � �� �  for y0 = 0) are:
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Fig. 8 shows absolute U and relative uncertainty 
bands �U U y�  of the regression line. They are 
obtained from (27) for absolute u = 0.5 and relative 
1% uncertainties, and the correlation coefficient ρk = 
= 0.3 for i =1, ... , 9 with a linearly increasing  
type B uncertainty uB B0 � �� �  for y0 = 0.

In the uncertainty band narrowing area, the 
uncertainty for the correlated yi -values increases 
almost twice as compared to the uncorrelated yi with 
the same absolute uncertainties, and the influence 
of type B uncertainty makes the uncertainty bands 
slightly asymmetric. The resulting relative uncertainties 
decrease from several dozen percent at the beginning 
of the regression line to less than 10% at the end of its 
range. For relative uncertainties, the bands of correlated 
and uncorrelated variables almost coincide. They are 
slightly greater for the values of uncorrelated variables 
than for correlated variables. The initial relative values 
linearly increase to the level below 3, while relative 
values do not exceed the level of 2−3%. The influence 
of a linearly increasing type B uncertainty is practically 
imperceptible.

The correlation coefficient ρCy y
1 2

 between the va- 
riables y1 and y2 from (24) of the regression line, 
considering the influence of type B uncertainty (27), 
has the form

Fig. 8. Absolute U and relative uncertainty bands �U U y�  of the regression line

�
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Оцінка смуг невизначеності лінії регресії для 
корельованих даних змінної Y з використанням 
правил GUM
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Анотація
Розглянуто оцінювання невизначеності вимірювань при побудові калібрувальної залежності засобів вимірювання 

за допомогою вимірювального експерименту, у ході якого вимірюються значення змінної Y спільно з вимірюванням 
абсциси Х. Стаття обмежується дослідженням найпростішого випадку – лінійної регресії, але з урахуванням даних 
невизначеності вимірювань типу А і типу В та з урахуванням кореляції й автокореляції між ними. Отримано 
вирази для сумарної стандартної та розширеної невизначеностей у кожній точці вимірювань. Залежність відхилень 
виміряних значень ординати Y від значень абсциси Х являє собою досліджувану смугу невизначеності. Наведено 
основні співвідношення для випадку відсутності невизначеності вимірювання абсциси Х. Розглянуто випадок 
наявності точок із некорельованими ординатами та однаковими невизначеностями. Досліджено кореляцію в серії 
повторних вимірювань в одній точці ординати з одним і тим самим значенням абсциси. Наведено співвідношення 
для оцінювання невизначеності вимірювань за наявності кореляції між ординатами різних виміряних точок. 
Розглянуто змодельовані чисельні приклади. Розраховано лінію регресії та смуги невизначеності для однакового 
значення абсолютної або відносної невизначеності. Досліджено вплив значення коефіцієнта кореляції для ординат 
на діапазон невизначеності. Порівняно лінії регресії для постійних абсолютних або відносних невизначеностей 
виміряних значень ординати. Розглянуто приклад наявності кореляції значень змінної Y в діапазоні невизначеності.

Ключові слова: вимірювання; автокореляція; лінія регресії; смуги невизначеності типу А та типу В.

Due to the linear dependency of y from x, these 
variables are fully correlated, which means that the 
same correlation coefficient as (28) have both variables 
x1 and x2 .

4. Conclusions
The type A uncertainty bands of the regression 

line determined from measurements, similarly as for 
uncorrelated variables, run hyperbolically, and their 
cut-offs are symmetrical as to this line.

For the same value of relative uncertainties, the 
limits of the uncertainty band of the regression line 
are split hyperbolas with tangents diagonal to the 
line. In the middle part of the band, there is a con-
striction of width S depending on the parameters of the 
covariance matrix. With full correlation, i.e. for ρ = 1, 
the hyperbolic boundaries of the uncertainty band 
become straight lines parallel to the regression line.

With the increase in the correlation coefficient 
between the ordinates of the tested points, the slope 
of the regression line decreases significantly. The 
ordinates of points within the uncertainty band are 
correlated more strongly if they are closer, and their 

correlation coefficient tends to 1. This is applied to 
the entire range of y.

The accuracy of the regression line parameters 
improves with repeated measurements of the y -ordinate 
value of each point with the same abscissa xi . The 
results of observations in such a series are close to 
each other, and it is necessary to consider the impact 
of their autocorrelation. For a given point, the local 
covariance matrix, or the formula for the effective 
number of measurements can be used – see works of 
Warsza and Zieba [4, 5].

Type B uncertainty is evaluated heuristically 
from the maximum permissible error E (MPB) of 
the meter. For the uniform distribution of errors with  
a range 2E, the uncertainty uB is the standard devia-
tion E /√3. Usually, the error E linearly depends on 
(y – y0) inside the measured range ymax – y0 (e g. for 
digital instruments).

The uB uncertainty is summed up geometrically 
with type A uncertainty of the regression line obtai-
ned from measurements. The resultant combined and 
expanded uncertainty bands widen with the increase 
of y and x.
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