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Abstract

The paper presents the problems of evaluating the standard uncertainty of measuring a quantity using the type B
method, the result of which is the average value of the results obtained from two channels with the same parameters, for
example, as the indications of two measuring instruments of the same type. It is shown that for given values of maximum
permissible errors (MPE) of measuring instruments and their readings x, and x,, the uncertainty of the result determined
a posteriori is not equal to the uncertainty determined by the conventional method (GUM). It is shown that when the
measurement result is determined as arithmetic mean y=(x,+x,)/2, additional information as the half distance of readings
v=|x,—x,|/2 an be used to correctly determine the standard uncertainty of such measurement. Depending on the half distance
of readings, the standard uncertainty can theoretically vary from its maximum value (the readings of both meters are equal)
to zero (with maximum difference in readings). The analysis of the uncertainty was carried out for uniform distributions of
possible deviations of the readings of measuring instruments within their MPE. The results of simulations by the modified

Monte-Carlo method, which show good convergence with theoretical results, are given.
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1. Introduction
1.1. Type B uncertainty

It is well known that the standard uncertainty
u(X) is evaluated based on scientific judgment about all
available information on possible variability of X. The
pool of information may include previous measure-
ment data; experience with or general knowledge of
the behaviour and properties of relevant materials
and instruments; manufacturer’s specifications; data
provided in calibration and other certificates; un-
certainties assigned to the reference data taken from
handbooks [GUM, 1]. According to the definition of
uncertainty [GUM, 1], [VIM, 2]: uncertainty is a pa-
rameter, associated with the result of a measurement,
that characterizes the dispersion of the values that could
reasonably be attributed to the measurand. To correctly
evaluate the standard measurement uncertainty from
a formal view, the procedure of a non-statistical type B
method should be based on the probability density
function (PDF) f,(X]|x)=f;(X—x) of possible X-values
of the measurand around the observed measurement re-
sult x (and, of course, the parameters of the used instru-
ment, as well as the conditions of measurement, etc.):

Uy (X|x) = \/j:(X—x)z fx (X|x)dX.

In this relation, x (result value) is known and
non-random, while the value of the measurand X is

ey
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random [3]. L.e., to evaluate Type B uncertainty, we
must use a method, which is similar to that used to
evaluate Type A uncertainty. However, in the case
of type B uncertainty, the derivation of the distribu-
tion fy(X—x) of a measurand is different from that of
type A uncertainty, which is based on the distributions
obtained from estimation theory [3].

Since manufacturers usually provide maximal
permissible errors (MPE) *-A,,, of their instru-
ments, in practice, another probability distribution
(Al X)=f.(x—X) of the measuring instrument errors
(A=x—X) is used, which describes the distribution of
possible x-values of the measurement results at a known
value of the measured quantity X. In [GUM, 1] this
distribution is called “a priori distribution”. This distri-
bution (its estimations or at least its parameters) can
be determined experimentally based on the tests carried
out, for example, as in the case of calibration. It should
be noted that for distribution f, (x—X), the x-value
of a result is random, while the value of the measu-
rand X is known, i.e. not random.

For known values of *A,,., the PDFs p,(X—
—x;|Aypp) and p (x—X|A,,;) are described by the
dependences:

fX(X _xi)’ |X _xi| SAypps
0 otherwise.

pX(X_xi|AMPE)={ (2
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Fig. 1. A priori PDF p (x—X|A,,;) of possible x-values of the instrument readings at a known measurand X(a), and PDF py(X—x,|A,,;) of

possible X-values of a measurand at known instrument readings x;(b), a posteriori distributions p,(X—x,|A ), px(X—x, |A,p), @and joint

distribution p,(X|x,,x,, A,;) Without a normalizing factor Q(x,,x,, A,»;) — shaded

fx(x—X),|x—X|SAMPE,

Py (x -X |A MPE): { 0 otherwise.

Despite a certain similarity, the PDFs p(X—
—x,|A,pe) and p (x—X|A,,z) are not the same. The
differences of these PDFs are shown in Fig. la, b.
For these PDFs, the range x(X,A,,;) for indicating,
when the values of the measurand X and MPE are
known, is:

X_AMPESX(X’AMPE):X+AMPE’ 4)

the range X(x;,A,,;) for the value of the measurand X,
when the indication x, and MPE are known, is:

X = Ay < X(xi’AMPE) =X+ A ®)

Although here, in the simplest case of measuring

the width of both ranges is the same (2:A,;,;), the

standard uncertainty of the observed result x is equal
to the standard deviation of the indication error:

Ug (X|xi) = \/IXﬁAMpE (X X )2 Px (X_xi |AMPE)dX =

X; =Aypg

(6)

X+Aypp 2
= s(A|X) = \}jxﬂm (x—=X) p, (x—X|AMPE)dx,
however, as it will be shown below, in case of more
complex measurements, this approach can lead to
incorrect values.

1.2. Simultaneous measurements of quantities using two
measuring instruments of the same type

Such measurements are used to increase the level
of reliability on the results obtained in measurements
for important objects. The measuring channel may be
the same (with the same-A, , ) or different, i.e. with
different A,,;, and A,,,,. Let the same quantity
X be measured simultaneously using two measuring
instruments of the same type, with the same value
of MPE: A, ;. . =Apr,=Ayp and the same PDF
pa(x—X|A,,z) of possible readings x,, x, around X.
Then for independent readings x,, x, of both

instruments, their average value (the result of a given
measurement) is equal:

X t+x, Ax, + Ax

2=X+A,,

=X+ 7)
where A =(Ax,+Ax,)/2 is an error of the result.
This error value is described by a PDF in the
form of a convolution of the PDFs of the error
possible values of the readings of these two measuring
instruments:
p, ((y _X)lAMPE) = 2.[AMPE Py ((xl - X)lAMPE)X

—Aype
Xp, ((Zy -X-x )lAMPE)dxl'

Distribution (8) characterizes the dispersion of
possible y-values of result (6) around the measurand
value X. Since, using both instruments of the same
type, the distributions of two readings are the same, the
standard deviation of possible y-values (7) is V2 times
smaller than the standard deviation o(x,)=0c(x,)=0(x)
of the readings of each instrument:

o’ (x)+0" (%) _o(x) _o(x)_o(x)

o(y)= 4 = \/Z \/E \/E -9

8)

In the conventional approach [GUM, 1], this
value is taken as the standard uncertainty of such
measurement:

u,(y)=o(y)= GJ(—;)

(10)

This is where the basic problem arises, related to
the fact that such approach, based on the principles of
classical probability theory, quite fails to correspond to
the definition of the uncertainty, as a measure of the
dispersion of possible measurand values (X) around the
obtained result (), and not vice versa.

The aim of the study. The purpose of the
following study is to accordingly derive relations for
correct evaluation of the standard uncertainty of a
two-channel measurement and to perform a Monte-
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Carlo test for the correctness of the obtained rela-
tions.

2. A posteriori probability distribution and standard un-
certainty of measurand
2.1. A priori distribution for two-channel measurement

If two meters of the same type are used to mea-
sure the same (unknown) value of the measurand X
and two observations (instruments readings) x, and
X, are obtained, then for these two readings there are
two distributions (2) py(X—=x,|A,p5)s Py(X—%,| Aypr)
of possible values of the measurand X around these
readings (Fig. lc). As it was mentioned above, to
correctly evaluate the standard measurement uncer-
tainty using two meters, one should first derive the
PDF f(X—y)=p,(X|x,, x,,A,,,;) of possible X-values
of a measurand around the observed measurement
result y. In other words, one needs to answer the
question: what X-values could the measurand have if
the measurement result was determined as the average
y-value from the readings x,, x, of the corresponding
instruments?

Since the readings of two meters are consistent
with the values of the maximum permissible error
A, and with the observed readings x, and x,, the
interval, in which the value of the measurand X can
be measured by ordering the meter readings x,<x,,
exists in the intervals (Fig. 1c¢):

Xy =Dy SX S +A e (11)

These two distributions form a combined
distribution p,(X|x,, x,,A,,z) of possible values of
the measurand X (Fig. 1c), which in interval (11) is
described by the relation:

Py (X —x|A e ) Py (X —x, |A
pX(X|xl,x2,AMPE): X( llQ(Aj:Elz XAEPE) 2| MPE)j

where Q(x,,x,, A,p;) is a constant that ensures the
normalization of the distribution:

Q(XI’XZ’AMPE):J. Px (X|xl’x2’AMPE)dX' (13)

X =Aypg

X +Aupg

2.2. Example for a uniform a priori distribution

A specific example of measuring the same vol-
tage with two voltmeters of the same type with
A,pr=10.05V will be studied first. Let us assume
that the indications of voltmeters are: u,=2.265V and
u,=2.345 V. Therefore, the measurement result is (7):

Mmr 5305y,

y=U-= (14)

The interpretations of the uncertainties of the
voltage measurements by both voltmeters and the
uncertainty of a two-channel measurement are given
in Fig. 2. For #,=2.265V of the 1% voltmeter and
A, pp=10.05V, the range of possible values of the
measured voltage (Fig. 1lc and (5) accordingly) is
between: 2.265V—0.005=2.215V and 2265V +
+0.005=2.315V. In Fig. 2 this interval (left side)
is filled by grey colour. For u,=2.345V of the
2n yoltmeter and A,,,; =1 0.05V, the range of pos-
sible values of the measured voltage is between:
2.345V —0.005=2.295V and 2.345V + 0.005=2.395V.
In Fig. 2 this interval (right side) is filled by grey
colour too.

Because for both voltmeters the measured voltage
is the same, having determined result (14), the range
of the uncertainty is the result of the operation & both
ranges in Fig. 2, i.e., between 2.345 V—0.005=2.295V
and 2.265V + 0.005 = 2.315 V. The width of this range
is 22d=2.315—2.295=0.02 V and its half width is
d=1V. Consequently, the standard uncertainty of
such a two-channel measurement with the result
U=2.305V is:

XAy S X <x 4A, (12 ”c(U)Zjlg:O'%V ~0.00577 V. (15)
u =2265V .
2215V _gosv T 2315V AvpE=10.05V
* w=2345V
1 u
}
]
o l00sv +0.05V
2205V e »f2.395V
I
I 2+v=2.315 - 2|295 = 0.020 V
—
1.0V 1.0V
pohat
y=U=2305V

Fig. 2. Interpretation of uncertainties of the voltage measurement by both voltmeters ( u,=2.265 V and u, = 2.345 V),
A,pp =% 0.05 V and of two-channel measurement
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In the conventional approach [GUM, 1] (10),
accounting for the independency of the indications of
both voltmeters, the standard uncertainty of the result
(10) is:

A 0.05V
u U) = MPE
c,us( ) (23 \/g
One can see that when evaluating the uncertain-

ty by different approaches, we obtain different values,
about 3.4 times.

~2.041V. (16)

2.3. Standard uncertainty for a priori uniform distri-
bution in general case. Using indications x, ,x, of both
instruments and the MPE value A, as in the example
presented above, the width of the interval within the
located measurand is:

v

2d = ZAMPE _|x1 —)C2| = 2AMPE (1 - |;CIA_ XZ|] = 2AMPE (1 - ]’ (17)

MPE MPE

where v=|x,—x,|/2 is a half of the distance between
the indications.

Based on (17), the a posteriori uniform distribu-
tion (12), (13) for the measurand is given by the
expression:

1

%
oA 1=
MPE( AMPJ (18)

0<|X =) <A -v,0SVv<A,,,

0, otherwise ; v> A, .

Px (le’V;AMPE) =

{1,
X

Therefore, in general case (18), the standard un-
certainty of such a two-channel measurement is:

A %
i) =2 (1)
MPE
19
0<v<A (19)

MPE *
The dependency (19) is shown in Fig. 3a. We
can see, that for a two-channel measurement with in-

06 I I I I

e, u(X | v; AMPE

0.45

0.3

0.15

0 | | | |
0 02 04 0.6 0.8 1

Fi

struments of the same type (same A, ), the standard
measurement uncertainty decreases when the interval
between the readings of instruments increases. The
standard uncertainty (A,,;/V6) determined by the
conventional method [GUM, 1] is shown by the dash
line.

3. Monte-Carlo simulation results

A modified Monte-Carlo method (MCM) was
used to verify the obtained relation (19) of the com-
bined standard uncertainty of the measurement
result. In general, the conventional MCM is applied
to study simple problems, not inverse ones. This is
a consequence of the fact that in the conventional
MCM [4], the parameters of the distributions of input
quantities and the function, according to which the
output quantities are determined, are given, and then
by multiple draws we determine the parameters of the
distributions of output quantities. On the other hand,
for inverse problems, the parameters of the distributions
of input quantities must be determined.

Regarding the verification of the dependence of
the standard uncertainty of the mean value of the
readings of two instruments of the same type with a
given probability distribution of possible deviations of
the readings of instruments within the limits of the
maximum permissible error, the modification consists
in repeated application of the conventional MCM.

The first step is to assign (i) the value of the
maximum permissible error A, (ii) the value of the
measurement result y, (iii) the variation range of the
measurand:

Y=Bypr = Xy S XS X =y + A (20)

With this, the successive X -values of the input
quantity are determined as:

X, =X, +hx=y—A, +k-hx, k=0,1,2,..., K, (21)

where hx=2A,,,;/K is the value of the step of a changing
measurand, K is the number of the measurand values

0.45

0.3

0.15

0 | | | | %8

0 0.2 04 06 0.8 1

g. 3. Theoretical values of standard uncertainty vs ratio v/A,,, (for a priori uniform distribution) (a),

results of Monte-Carlo simulation ()
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around the y-result, and (iv) N values v,=Av-i—hv/2
(i = 1,...,N) with step "v=A,,,./N of a half distance
between the previously determined results.

The second step involves K times (with changed
parameters) of the MCM simulation with M trials.
For this, during each k& (k = 0,1,...,K) of the MCM
simulations (j = 1,2,..,M) the following procedure is
realized:

1) for a given value of X, (k = 0,1,...,K) of the
input quantity, M pairs of random values of x,, ,
X,,; of the readings of both measuring instruments
within X, £ A,,,, are generated;

2) based on the values of x,, ;, x,,;, M values
of the output quantity are calculated — measurement
results:

Yy = (xl;k,.f +x2;k’/)/2, (22)
and the modulus of the half-width between the
indications:

Vi = (xz;k,j Xk )/2; (23)
3) the number of L,; events, for which two
conditions:

(y—hx/ZSyk,j Sy+hx/2) &
(24)
(vi —hv/2<v,, <v, +hv/2)

(when the observed measurement results y, ; fall in
the interval y+hx/2 around the set y-value and
the estimated half-width v, ; falls in the interval
v, £hv/2) are determined.

The third step concerns the determination (from
the results obtained by simulations) of the standard
uncertainty:

1) for different input X, -values and half width v,,
the matrix P of probability values is estimated:

b 25)
L

Pk.z

N

M=

k.i

=~
Il

1

2) using X,-values and corresponding estimated
probabilities P,, at the given values of the half-
width v,, the standard uncertainty as the standard
deviation of the measurand is evaluated as:

”(X|V,~)=S(X|vi)=\/

g(Xk _ka ‘Pk,ia
k= (26)

X, -

M=

7:

k

o

k

0

The obtained results of a Monte-Carlo simulation
(M=3%x10% when K=20, N=20 are shown in Fig. 3b.
We can see that the standard uncertainties evaluated
by simulations are very close to the theoretical
values.

4. Notes on other applications of a similar method

It should be noted, that in [5], after referring
to [6], the so-called minimax method of evaluating
the result with multiple observations (of number #),
which have limited maximum errors, is presented and
analysed. In this method, the result of a measurement
is determined as the centre of a segment that includes
all intervals around each result. That is, although this
method is applied to multiple measurements, but
the principle of determining the result is similar to
the two-channel measurement presented. Fig. 2 also
can be applied to this method, only for two results
(n=2). However, there is an important difference
between the one discussed and the one presented in
these papers. These differences are a consequence
of the fact that the discussed method provides
measuring the same quantity with two meters at the
same time, while the presented method provides the
processing of successive measurement results over
time. Besides, the paper analyses in detail the standard
uncertainty, which is dependent on the half distance
between the indications of two measuring instru-
ments.

Subsequently, this method was discussed in [7]
and developed in [8]. However, no detailed analysis
of the uncertainty of such measurements was carried
out in these works. In addition, it should be noted
that this method leads to a well-known method based
on positional statistics [6], often used to develop
observations with uniform distributions [9].

5. Conclusions

Based on the analysis, we can conclude that in
the case of a two-channel measurement with identical
measuring instruments, the uncertainty, which results in
the average value of the readings of these instruments,
the standard uncertainty cannot be determined in the
conventional way, i.e. as the standard uncertainty of
the readings divided by the root of 2.

To correctly determine the standard uncertainty,
first it is necessary to determine the a posteriori
distribution of the measurand, the shape of which
depends on the shape of the a priori distribution,
and its parameters depend on the distance between
the readings of the used instruments. Therefore, the
standard measurement uncertainty is a function of this
distance.

With equal readings of both meters, the standard
uncertainty and the standard uncertainty determi-
ned from the a priori distribution of an individual
instrument are equal. On the other hand, when the
interval between the readings increases, the standard
uncertainty decreases. Theoretically, the uncertainty
tends to zero if the distance between the readings of
both instruments take extreme values with an interval
of 2A,p.

The simulations by the Monte-Carlo method
confirmed the correctness of the derived relations for
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the standard measurement uncertainty, determined
from the a posteriori distribution, will be similar.
For small distances of the instrument readings,
the standard uncertainty will be larger, and with
increasing distances, the wuncertainty will de-
crease.

calculating the standard uncertainty of a two-channel
measurement.

The results are obtained for the uniform a priori
distribution of the instrument readings, but the same
approach can be used for other a priori distribu-
tions. The general character of the dependence of
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AHoTauis

Y cTarti po3rasiHYTO MpOOGJeMM OIiHIOBAaHHSI CTaHAAPTHOI HEBM3HAYEHOCTI BHUMipIOBaHHSI BEJIWYMHU METOIOM THUITY
B, pesynbTarom SIKOTO € cepelHE 3HAUEHHS Pe3y/IbTaTiB, OTPUMAHUX i3 MBOX KaHAIIB 3 OJHAKOBUMHU ITapaMeTpamHu,
HaTpUKJIaa, SIK MOKa3u ABOX OAHOTUITHMX 3acO0iB BUMipioBaHHs. Taki BUMipiOBaHHSI BUKOHYIOTh, HAINlpUKJIAd, 3 METOIO
MMOKpAIIeHHSI HaIiiHOCTI OTpMMYBAaHUX pPe3yJIbTaTiB. 3arajoM IS MPaBUJILHOTO OILiHIOBAHHS HEBU3HAYEHOCTI TUITy B,
MOAIOHO §K i Y BUIIAAKY OLIIHIOBaHHSI HEBM3HAYEHOCTi TUMY A, MOTPiOHO MaTW PO3MOIiN a posteriori MOXIUBUX 3HAUYEHb
BUMIPIOBAaHOI BEJIMYMHU HABKOJIO OTPMMAHOTO pe3yibTary. [lokazaHo, 110 KOJW pe3yJbTaT BUMIpPIOBaHHS BM3HAYA€ETHCS
SIK cepenHe apudMeTHyHe MOoKasiB X, Ta X, 3ac00iB, y=(x,+X,)/2, TO ISl OTPUMAaHHsI MOTPIOHOrO PO3MOMAINY a posteriori
MOXe OYyTHM BHMKOPHCTAHO TOAATKOBY iH(OpMAIlil0o y BUIVISAAI MMOJOBUHU BiACTaHI V=|x,—X,|/2 MiX Mokazamu 3acoO0iB.
VY takoMy pasi cTaHgapTHa HeBU3HaueHicTh TUIY B € (yHKIli€elo Bin L€l BincTaHi i TEOPETUYHO BOHA MOXE 3MiHIOBATUCH
Bill. MAKCMMAaJIbHOTO 3HA4YeHHs (IpYM OJHAKOBUX TOKa3axX 000X 3aco0iB) M0 Hyas (MpM MaKCHMMAaJbHiil pi3HUII MOKa3iB).
TeopeTnuHuil aHaIi3 cTaHAAPTHOI HEBU3HAYEHOCTI MPOBOIMBCS [UISl PIBHOMIPHOTO @ priori po3noiiy (po3noaiay MOXJIUBUX
BiIXWJIEHb TIOKa3iB 3ac0o0iB y MexXax Ay;), MU AKOTO PO3IOAUL a posteriori € TeX PIBHOMIPDHMM, ajle B iHIIMX MeXax:
V—(Aype— V) <X<y+ (A, pr—V). Y 1LIbOMY BUNIANKY MA€EMO JIiHiliHE 3MEHILIEHHSI CTAaHIAPTHOT HEBU3HAYEHOCTI Bill 30i/IbIIIEHHS
MOJIOBUHU BiJICTaHi vV MiX IOKa3zaMu 3aco0iB. 3 METOI0 MepeBipKu MNpPaBUIBHOCTI OTPUMAHUX pPe3yJIbTaTiB BUKOHAHO
MozetoBaHHS MoaudikoBaHuM MetonoM MonTte-Kapno. Moaudikauis nossgrae y tomy, 110 3BUYaliHUIT MeTon MoHTe-
Kapno BUKOHYETbCSI GaraTopa3oBo AJisl pi3HUX MOXJIMBUX 3HaUY€Hb BUMIipIOBAHOI BEJIMYMHN HABKOJIO OTPUMAHOIO pe3yjbTaTy
B MeXax tAy;; Ta Pi3HMX MOXJIMBMX 3HaueHb 2V BiICTaHi MiX MoKa3aMM 3aco0iB. ¥ pe3yjibTaTi TaKOTO MOJENIOBAHHSA
OTPUMYEThCSI OIliHKA PO3MOMIiNY a posteriori BUMipIOBAaHMX BEJWYMH, Ha OCHOBi SIKOTO BM3HAuyaloTh OIIiHKM CTaHAApTHOI
HEBU3HAYCHOCTI Ui Pi3HMX 3HauYeHb ITOJOBUHM BincTaHi v. [IpeacTaBieHO pe3yabTaTh TaKOTO MOMAETIOBaHHS, SIKi MOKa3aIn
I0OpY 30iXKHICTh i3 TEOPETUUYHUMU pPe3yJbTaTaMMU.

KmouoBi cioBa: Tun B; HeBU3HaueHICTh, BUMipIOBaHHS; BUMipioBaHa BeJauuynHa; MoHTe-Kapiao monentoBaHHS.
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