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Abstract

The expression of calibration and measurement capabilities (CMCs) of accredited calibration laboratories in a range
of values is analysed, and the insurance of appropriate linear interpolation to find the measurement uncertainty at average
values is considered.

To minimize the expanded measurement uncertainty, it is proposed to calculate the coverage factor using the kurtosis
method so that it would correspond to the composition of the distribution laws of the input quantities.

To approximate the laboratory calibration and measurement capabilities when expressing them as an explicit function
of the measurand, it is proposed to apply the least squares method. For non-polynomial dependencies, the capabilities shall
be first transformed by replacing the variables into linear ones, which shall be followed by using the least squares method.
To facilitate the approximation of CMCs, the use of the “trend line” function of MS Excel is proposed. Four additional
nonlinear functions are considered, which are approximated by hyperbolic and homographic functions of Types 1 and 2, as
well as by quadrature addition, which can also be transformed into a linear function, and the estimates of their parameters

can be obtained by using the least squares method.

An example of performing the approximation by various functions of calibration and measuring capabilities of

a laboratory when calibrating a digital caliper is considered.
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1. Introduction

According to the Law of Ukraine “On Metrology
and Metrological Activity” [1], “Uniformity of mea-
surements is a state of measurements for which
their results are expressed in measurement units
determined in this Law, and the characteristics of
the error or measurement uncertainty are known with
a known probability and do not exceed the estab-
lished limits™.

As it is known, measurement uncertainty is
a quantitative measure of measurement accuracy. The
measurement accuracy evaluation is not only one of
the tasks of ensuring the uniformity of measurements,
but also a necessity for building the customer confi-
dence in the quality of metrological works.

One of the essential criteria that characterize
calibration and measurement capabilities (CMCs) of
a laboratory accredited by the National Accreditation
Agencies of Ukraine — according to the criteria
of DSTU EN ISO/IEC 17025:2019 “General
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Requirements for the Competence of Testing
and Calibration Laboratories” [2] — is the lowest
measurement uncertainty that the laboratory achieves
when calibrating measuring equipment.

As it is stated in ILAC-P14:09/2020 “ILAC Poli-
cy for Measurement Uncertainty in Calibration” [3]:
“A CMC is a calibration and measurement capabili-
ty available to customers under normal conditions:
as described in the laboratory’s scope of accreditation
granted by a signatory to the ILAC Arrangement or b)
as published in the BIPM key comparison database
(KCDB) of the CIPM MRA”.

The measurement uncertainty covered by CMCs
shall be expressed as the expanded measurement
uncertainty having a coverage probability of approxi-
mately 95%.

According to [3], there shall be no ambiguity in
the expression of CMCs in the scopes of accredita-
tion of the calibration laboratory and, consequently,
no ambiguity regarding the lowest measurement
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uncertainty that the laboratory anticipates to achieve
during calibration.

In accordance with [3]: “There shall be no ambiguity
in the expression of CMCs in the scopes of accredita-
tion and, consequently, no ambiguity regarding the
lowest measurement uncertainty that may be anticipated
to be achieved by a laboratory during a calibration or
a measurement”. CMCs shall be always declared
numerically and not exclusively by reference to a stan-
dard or other document that describes the performed
measurements [4]. The unit of the measurement uncer-
tainty shall be always the same as that of the measurand
or expressed in terms relative to the measurand,
e.g., percent, uV/V, or part per 10°. Because of the
ambiguity of their definitions, the use of terms “PPM”
and “PPB” are not acceptable [3].

Calibration laboratories in their “Scopes of
Accreditation” declare the lowest measurement un-
certainties so that their potential clients could assess
the possibility and quality of calibration works.

Currently, there are 37 accredited calibration la-
boratories in Ukraine, each of which has declared its
calibration and measurement capabilities in a tabular
form by the range of the calibrated measuring equip-
ment in the “Scope of Accreditation”.

The declared measurement uncertainty during ca-
libration does not characterize metrological characteris-
tics of the measuring instrument (hereinafter referred
to as MI) being calibrated, but the requirement for the
quality of its calibration.

One or more of the following methods shall be
used to express the measurement uncertainty [3]:

a) a single value, which is valid over the entire
measurement range;

b) a measurement range — in this case, a calibra-
tion laboratory shall ensure that the linear interpolation
is appropriate to find the measurement uncertainty at
intermediate values;

¢) an explicit function of the measurand and/or
a parameter;

d) a matrix, where the values of the measurement
uncertainty depend on the values of the measurand and
additional parameters;

e) a graphical form, providing there is a sufficient
resolution on each axis to obtain at least two significant
digits for the measurement uncertainty.

The paper considers methods b) and c¢), which
cause the greatest difficulties for domestic metrologists
when presenting the measurement uncertainty in CMCs.

Presentation of the main material
1. The measurement range, defined by the limits of the
measurand and the corresponding expanded measurement
uncertainty limits

This expression of CMCs is most common in
domestic accredited calibration laboratories, when
the range of expanded measurement uncertainties
U,n-- U, for the range of input quantities X,;,...X,.x

min

is indicated without providing a way to perform the
interpolation. Usually, the value U, corresponds
to X, and the value U,,, corresponds to X,,,..
However, according to paragraph 4.2 b [3],
“in this case, a calibration laboratory shall ensure
that the linear interpolation is appropriate to find
the measurement uncertainty at average values”.

To find the value of the lowest achievable mea-
surement uncertainty U at any point X in the speci-
fied range of the measurand X,,...X,,,, using the linear

max

interpolation, one needs to use the formula [5]:

U, —-U.
uv=U_ +(X-X_)———. 1
" ( mm)Xmax _Xmin ( )

If it is impossible to ensure the required accuracy

of such interpolation in the entire range X, ... X .o it
is necessary to divide it into subranges: X -Xmax
/Y2min"'/Y2mz\x’ AR XNmin"'XNmax (A/lmin:Xmin; A/imax:)((iﬂ)min)ﬂ

in which the required accuracy of the linear interpola-
tion will be ensured. In this case, the measurement
uncertainty shall coincide at the breakpoints, i.e.
[]imax: l](iH)min .

It is according to the above rules that the method
of expressing the CMCs in the form of a measurement
range, given by the limits of the measurand and the
corresponding limits of the expanded measurement
uncertainty, is implemented in reputable foreign
accredited laboratories.

2. Explicit function of the measurand and/or parameter

When finding the appropriate approximating
function, first, it is necessary to calculate the value
of the measurand X, and the corresponding value of
the lowest measurement uncertainty U, at » points of
the range (XX )-

To minimize the expanded measurement un-
certainty, it is advisable to choose the coverage factor
so that it would correspond to the composition of
the distribution laws of the input quantities. This can
be achieved by using the kurtosis method [6].

It is advisable to find the approximating func-
tion U,,=f(X) for these points using the least squares
method (LSM).

If the approximating function is the m-th order
polynomial:

U,=d+A4X+4X" +4,X", ()

then its coefficients A4,, 4,, ..., A, are found by

Cramer’s rule [7] according to the formulas:

Alzﬂ, e Am:&, (3)
D D

where D is the principal determinant, D,, D,, ..., D,

are determinants that are derived from the principal one

and correspond to the coefficients A4,, A,, ..., A,. The

order of determinants to obtain the coefficients of the

m-th order polynomial is m+1. For polynomials of the

order from 1 to 4, these determinants are given below.

DO
4=t
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no X1 [X°] [X°]i[X"]

X ] X)X
D=11x*] [X] [X*] [X°1i[X°]
] (X7 [X7] [X°)[X]

[X*] [X*] [X°] [X7][X°]

no U] [X*1[X°] [X°]
1XT[UX] ] [ 1]
Dy =|[x*] [UX*] [X*][X°] [X°]

no [X][X*] [U] {[X']
[XT [x°] [x°] [UXT X
;= |[X°] [X°] [X*] [UX°][X°]

[X*] [X°] [X°] [UX*] [X°]

The determinants indicate », which is the number of
points in the range (X, ..X_ ); [X]=).X,, [X*]=) X,...
i=1 i=l

min max

)= X% [U1= U, [UX]= YUY, [UX]= Y U,X2:
i=1 i=1 = i=1

[UX*1=>UX}; [UX*1=> UX}.
i1 i=1

For the compactness of the presentation of the
material, the determinants of the 2, 3 and 4 orders
are highlighted in the above 5-th order determinants
with the corresponding dotted lines.

To find the parameters of a polynomial and a num-
ber of non-polynomial functions, one can display the
calculated points X, U, on a graph in MS Excel and
use the “trend line” function. This function provi-
des the LSM-approximation of the functions listed
in Table 1.

no (X1 U] [X°] [X°]
[X] [x?] [UX][X*] [X°]

[X*] [X°] [UX*] [X7] [X°]

n [X] [xX*] [x°1 V]
[X] [X°] [X°] [x*] [UX]
= ([X°] [X°] (X' (X0 [UX7]
[X°] [X'] [X°] [X°] [UX°]
[X'] [X°] [X°] [X7] [UX']

In this case, the accuracy of the approximation
can be assessed both by comparing the graphs of
the original and approximating functions, and by
the coefficient of R? determination calculated by the
program, the value of which shall be closer to 1,
by means of which the more accurate approximation
is performed.

The relative approximation error can be calculated
for the selected approximating dependence using the
formula:

Ua i Yi
8api =100- PU P % . (4)

i

The logarithmic, exponential, and power func-
tions implement the LSM for a linear function,
into which MS Excel transforms the original nonli-
near function using the substitution of variables me-
thod.

Table 1

Approximating functions of MS Excel

Ne Function name

Mathematical expression

1 Linear (m=1)

U, =4 +4X

2 Polynomial, order m=2...6

U, =4 +AX+A4X . +4,X"

3 Logarithmic

U, = 4+ 4 In(X)

4 Exponential

Uap = AO exp(AIX)

5 Power function

p— Al
U, =A4X

Ykpaiucokuii memponoeiunuii ucyprnan, 2024, Ne 4, 11-18 13



Expression of calibration and measurement capabilities of accredited calibration laboratories...

Table 2
Other approximating functions
Mathematical Substitution of variables
Ne Function name . " " Linear function
expression U=0oU) | X =y(X)
| U - 4.k * L1 i
6 |Hyperbolic ap = 4, 5% U =U X —} U=4,+4X
. 1
Homographic U, =——— U =1/U - U' =4 + AX
7 functions of Form 1 ! A+ 4X / X =X 4 !
8 Homographic U, :L Ut = l/U Y= L U = A +A0X*
functions of Form 2 YA+ AX X 1
9 | Quadrature addition Uap=\/A§+A12X2 U =U? X = Xx? U*=A02+A12X*

Four more nonlinear functions, which are ap-
proximated by hyperbolic and homographic functions
of Form 1 and 2, as well as by quadrature addition
(Table 2), can also be transformed into a linear func-
tion, and the estimates of their parameters A, and A4,
can be obtained using the LSM [8].

In the case of simultaneous presence in the mea-
surement uncertainty budget of contributions that do
not depend on the value of the measurand and the
contributions that are proportional to the value of
the measurand, in documents [4], [9], it is proposed
to evaluate the expanded measurement uncertain-
ties of these contributions separately, respectively, in
absolute U,,, and relative U, form, and to record
the combined expanded measurement uncertainty in
CMCGs in the form of = Q(Ug; + Uy). To find the
value of the combined measurement uncertainty in this
case, the following expression is used:

Uap = \/[UREL : X]Z + Ust . ®)]

It shall be noted that this formula is valid if
both coverage coefficients when calculating U, and
U,;s are equal to 2 (i.e., when assigning a normal
distribution to both components).

3. Example of approximation. Approximation of CMCs
of a calibration laboratory when calibrating a caliper

The best existing caliper was selected as the digital
caliper IIIIII-1-150-0,01 (measuring range 0-150 mm,
digital readout step 0.01 mm) [10].

Calibration of the HIIIIL-1-150-0,01 caliper is
carried out by the method of direct measurement of
end gauges, which were used as working measurement
standards and correspond to the 1% accuracy class
according to DSTU ISO 3650:2009 “Geometrical
Product Specifications (GPS) — Length Measurement
Standards — Gauge Blocks (ISO 3650:1998, IDT)” [11].
Calibration of the caliper IILILI-1-150-0,01 took place
at the following points of the measurement range of

external dimensions — 0.5 mm, 21.2 mm, 51.4 mm,
71.5 mm, 101.6 mm, 126.8 mm, 150.0 mm.

The dominant components of the standard
measurement uncertainty of Type B are as follows:

1) Estimate of the correction for the discreteness
of the digital caliper reading device.

Quantization error occurs in digital MIs and is an
instrumental random additive static error.

The estimate of the standard measurement
uncertainty of the quantization error is determined
by the formula:

uy(3l,) =1, (6)
23
where ¢ is the resolution of the digital caliper. For
g = 0.01 mm, u,(d/,)= 2.89 um.

2) Estimate of the correction for mechanical
effects.

Mechanical effects include the measuring force
and the gap between the measuring surfaces of the
caliper jaws.

Since the caliper is not equipped with a mea-
suring force stabilizer, the measurement requires the
application of a uniform and sufficient force. The
permissible value of the force of moving the frame
along the rod for a caliper with a measuring range
of (0—150) mm is 10 N. This leads to a rotation of
one extreme section of the rod relative to the other.
The measurement error caused by this rotation will be
determined by the formula [12]:

_PIL

) , 7
W= (7)

where:
L is the measured length, mm;
E is the modulus of elasticity of the rod material,
Pa (E,,=2x10° MPa); )
[ is the jaw extension length (/ = 40 mm);
P is the measuring force (P = 10 N);
I is the inertia moment of the cross-section of the

rod mm*, [ = 843.75 mm?*.
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Table 3

Values of dominant contributions of measurement uncertainty at the calibration points
of the caliper IILILI-I1-150-0,01

Calibration point, | (81.) u, (81,) u, Expanded megsurement
m 50y ), 50hy), H;n n k(n) uncertiunty
um um U, um, p = 0.9545
0.5 2.89 0.027 2.89 -1.200 1.67 4.83
21.2 2.89 1.16 3.11 —0.913 1.82 5.65
51.4 2.89 2.81 4.03 —0.600 1.91 7.72
71.5 2.89 3.91 4.86 —0.652 1.90 9.25
101.6 2.89 5.56 6.27 —0.799 1.86 11.65
126.8 2.89 6.94 7.52 —0.898 1.82 13.71
150.0 2.9 8.21 8.70 —0.965 1.80 15.63
The measurement uncertainty from mechanical U=km)-u,, (10)

effects, assuming a uniform distribution law, will be
determined by the formula:

ol
uy (81,,) :Tf‘;. (8)
The combined standard measurement uncertainty
will be determined by the formula:

u, = \JuZ (Bl )+ (31,,). 9)

The data for calculating the combined standard
measurement uncertainties of Type B at the specified
caliper calibration points are summarized in Table 3.

Since the distribution laws of both components
are uniform, the value of the expanded measurement
uncertainty when calibrating a caliper is easiest to
calculate using the kurtosis method [6]:

where k(n) is the coverage factor for the confi-
dence level of 0.9545, which was calculated by the
formula:
k(n)=0.12n* +0.In+ 2, (11)
where n is the kurtosis of the measurand, which in
this case is calculated by the formula:
_l.zug(SliX)+u§(81M).

4
uB

(12)

The values of kurtosis and coverage factors for the
above calibration points are given in Table 3.

In the example of implementing the approximation
for a caliper, the values of the dependence U=f(L)
and the results of its approximation are presented in
Table 4 and Fig. 1.

Table 4
Values of calculated CMCs and results of their approximation

Measurable Expanded measurement 5 © o & © 5

length, uncertainty (CMCs), g B 2 = &= TEE

_ 3 2 O o2 2 T

L, mm U, um, p =0.9545 o = o =
0.5 4.83 4.29 4.70 4.82 4.97 5.70
21.2 5.65 5.82 5.88 5.79 5.87 6.10
51.4 7.72 8.05 7.76 7.71 7.48 7.67
71.5 9.25 9.54 9.11 9.22 8.79 9.14
101.6 11.65 11.77 11.28 11.68 11.20 11.64
126.8 13.71 13.63 13.24 13.78 13.71 13.89
150.0 15.63 15.35 15.16 15.63 16.52 16.03
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Fig. 1. Caliper dependence U=f(L)
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Fig. 2. Relative error of approximation of the expanded measurement uncertainty (CMCs) dependence of the caliper by different
functions, %: linear (-----); quadratic (- - —); cubic (——); exponential (— —); quadratic addition (- - - —)
Table 5
The parameters of the approximating functions and values R?

Ne | Function name Mathematical dependence U, . f(L) Values R?
1 Linear Uapp =4.251+0.0740-L 0.9938
2 Quadratic U, =4.6348+0.05513-L+1.25-107"- 0.9989
3 Cubic U,p =4.7621+0.03837-L+4.27-10*1*-1.34-10° 0.9998
4 |  Exponential U,,=49467-exp(0.008- L) 0.9911

Quadratic — CJ?
50| uacr U, =0.00971545- I* +30.5578 0.9964

The parameters of the approximating functions
and their values R? are given in Table 5.

Fig. 2 shows the relative error of approxi-
mation of the expanded measurement uncertainty
(CMCs) dependence of the caliper by different
functions, expressed in percentage, which is calculated
by formula (4).

From Fig. 2 it is seen that the best approximation
is achieved using a polynomial of the third degree. In
this case, the approximation error does not exceed = 1.9%.

In this case, the CMCs table will be like Table 6.

Conclusions

1. One of the essential criteria characterizing the
CMCs of an accredited calibration laboratory is the
lowest measurement uncertainty that the laboratory
achieves when calibrating measuring equipment
and which is expressed in the form of an expanded
measurement uncertainty having a coverage probability
of approximately 95%.

2. To minimize the expanded measurement
uncertainty, it is advisable to calculate the coverage
factor using the kurtosis method so that it would
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Table 6
Excerpt from the scope of accreditation
Measurement Expanded Designation
. . . of regulatory
Object range in which measurement
Ne o . documents
of measurements the calibration is uncertainty o
erformed U for calibration
P methods
1 Ej‘;‘ﬁ_lso_o ol 0.5-150 mm U=4.7621+0.03837- L+ MKO1:2024
' +4.27-10° 1 -1.34-10°0

correspond to the composition of the distribution laws
of the input quantities.

3. When presenting CMCs in the form of
a range of values, it is necessary to perform
linear interpolation in the specified range. If it is
impossible to ensure the required accuracy of such
interpolation in the entire range, it is necessary
to divide it into subranges in which the required
accuracy of linear interpolation will be ensured. In

this case, the measurement uncertainty shall coin-
cide at the breakpoints.

4. When presenting the CMCs as an explicit function
of the measured quantity and/or parameter, the Least
Squares Method (LSM) shall be used to approximate the
calculated values of the lowest expanded measurement
uncertainty. For non-polynomial dependencies, CMCs
shall be first transformed into linear ones by changing
the variables, followed by the LSM application.

Iloganna KajiOpyBaJbHMX Ta BUMIPIOBAJIbHUX
MOZKJIMBOCTEH aKpPeIUTOBAHUX KAJiOpPyBaJbHHX
JaoopaTopiii y giana3oHi BUMipIOBaHb

l.IN. 3axapos, O.A. Hosocbonos, O.A. boutopa

Xapkiecbkull HaujoHanbHUl yHieepcumem padioenekmpoHiku, np. Hayku, 14, 61166, Xapkis, YkpaiHa
newzip@ukr.net; oanovoselov@ukr.net; olesia.botsiura@nure.ua

AnHoTauis

Y crarTi po3rasiHyTO NMUTaHHS, MOB’s3aHe 3 ¢dopMmyBaHHsIM “Cdepu akpeauTalii” kanidpyBajibHOi JabopaTopii, sKa
akpenutyetbes BinmosigHo 1o Bumor JJCTY EN ISO/IEC 17025:2019 “3aranbHi BUMOTH 10 KOMIIETEHTHOCTI BUTTPOOYBaTbHUX
Ta KajiopyBajbHUX JlabopaTopiii”. Halikpallioro Mipoto SIKOCTi KajaiOpyBaHb, sIKi TIPOBOISATHCS KaTiOpyBaJIbHOIO JJaOOpaTOPi€lo,
€ HaliMeHIllle 3HayeHHs1 HEBU3HAYEHOCTI BMMIpIOBaHb, sSKE€ JOCSITAETLCS 1Ii€l0 J1abopaTopi€lo MmiA 4yac KajaiopyBaHHS
BUMIpPIOBaJIbHOTO OOJIaIHAHHS BiAIOBIIHOI KaTeropii.

ITpoananizoBaHo (popMy BUpPaKeHHS KaaiOpyBaJIbHUX Ta BUMIPIOBAIbHUX MOXJIMBOCTEN aKpeIUTOBAHUX KaJiOpyBaJIbHUX
JlabopaTopiii miarmazoHOM 3HA4YeHb 1 PO3TJISHYTO 3a0e3MedyeHHs HaJeXXHOI JIHIMHOI iHTeprnosii IS 3HAXOMKEHHS
HEBM3HAYEHOCTI TPU CEepeaHiX 3HAUCHHSIX.

Jnst MiHiMizamii po3MmMpeHoi HEBU3HAYEHOCTI TIPOIIOHYETHCS PO3PaxoByBaTH KOEMIlliEHT MOKPUTTS 3a TOMOMOTIOIO
METONly eKCLEeCiB Tak, 1100 BiH BiAINOBiJaB KOMITO3ULii 3aKOHIB PO3MOIiIY BXiIHUX BEJIUYMH.

3anpornoHOBaHO 3acTOCYBaHHSI MeTomy HaiiMeHImux KsaapaTiB (MHK) nmnsg ampokcumanii KamiOpyBalbHMX Ta
BUMIpIOBJIbBHUX MOXJIMBOCTEN jabopaTopii Mpu BUpaXeHHi iX y BUIJISALI SIBHOI (DYHKILil BUMiploBaHOI BeJIWYMHU. s
HEMOJiHOMIaJIbHUX 3aJIeXKHOCTEeH 1X HEOOXiIHO CrovaTKy MEepPeTBOPUTH LIISIXOM 3aMiHM 3MiHHMX Ha JiHiMHI 3 HACTYMHUM
BukopuctaHHaM MHK. Jlnst nonermenHs anpokcumanii CMC 1poroHy€eTbCsl BUKOPUCTAHHS (DYHKUIT “miHis TpeHmy”
MS Excel. Po3misiHyTO 4OTMpHY IOAATKOBI HEiHiMHI (PYHKILI, sIKi allpOKCUMYIOThCS TinepOoJIiYHOK Ta APiOHO-TiHIMHUMU
(yHkuismu Buny 1 i 2 Ta KBaapaTypHUM A0JaBaHHSIM, SIKE TAKOX MOXHa MEPEeTBOPUTHU Ha JiHilHY (DyHKIIil0, i 32 10MTOMOTOI0
MHK orpumaTy OLiIHKHM iXHiX TapaMeTpiB.

HagseneHno npukiiag BUKOHaHHS alpoOKCUMAllil pi3HUMU (PYHKLISIMUA KaJliOpyBaJIbHUX Ta BUMiPIOBAJIbBHUX MOXJIMBOCTEN
Jlabopartopii mpu KaniopyBaHHI LM(POBOTO IITaHTEHIUPKYJIS.
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KirouoBi caoBa: iHTeprioJisiiisi; anmpokcuMmallis; Hakpalli KajaiOpyBajibHi Ta BUMIpIOBaJIbHI MOXJIMBOCTI; cepa
akpeauTallil; KajxiopyBajabHa J1JabopaTopisi; HEBU3HAUYEHICTh BUMipIOBaHb.
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