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Abstract

The paper addresses the challenges associated with applying machine learning models to detect outliers in metrological
datasets. While such models ensure the possibility to identify complex deviations in the structure of a sample without
relying on prior statistical assumptions, they do not provide normatively justified criteria for assessing the reliability of
their decisions. Specifically, such models lack interpretable confidence indicators, metrological traceability, and formalised
thresholds to determine whether an outlier is genuine. One proposed solution involves assessing the impact of eliminated
anomalous values detected by the Isolation Forest model on the standard measurement uncertainty of Type A when the
initial sample size is preserved through repeated measurements. This approach was validated using real-life measurements
of liquid flow performed with Coriolis flowmeters of various diameters. The results empirically proved the effectiveness
of the method in cases where the elimination of distortion-inducing values led to a significant reduction in measurement
variability. However, several limitations were also identified, including the sensitivity of models to small sample sizes, the
impracticality of performing repeated measurements in many real-life scenarios, and the lack of an objective threshold to
determine the “significance” of uncertainty reduction. These findings highlight the need for further study of the formalization
of confidence criteria in anomaly detection within the metrological domain, particularly in the context of compliance with

international standards such as ISO/IEC 17025.

Despite these limitations, the application of machine learning models opens new opportunities for automating the
analysis of metrological data and highlights the need to develop harmonized approaches for integrating such solutions into

the regulatory framework.
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1. Introduction

“An outlier is a member of a dataset that is in-
consistent with the other members of that set” [1]. In
metrology, this means that an outlier is considered an
individual value that contradicts the structure of the
measured sample, even if it does not formally exceed
the limits predefined by technical or physical condi-
tions. The main difficulty lies in the fact that such
values cannot always be formally identified without ac-
counting for the conditions of reproducibility, repeata-
bility, and the context of the measurement process.

To detect outliers, traditional approaches rely on
statistical criteria and tests, including the Grubbs test,
the Shapiro—Wilk test, Student’s t-test, and others.
These methods are based on assumptions regarding the
data distribution, typically assuming normality. Howe-
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ver, in practice, the presence of outliers can signi-
ficantly distort the estimates of distribution param-
eters (e.g., mean or standard deviation), leading to
a paradoxical situation in which the outlier influences
the criterion that is supposed to detect it. For this
reason, in metrological practice robust methods are
preferable, such as the interquartile range (IQR) or the
median absolute deviation (MAD), which are more re-
sistant to the influence of outliers. Nevertheless, these
approaches also require the definition of a threshold
value beyond which an observation is considered an
outlier. This threshold remains subjective and lacks
a standardized regulatory basis [2].

These limitations have spurred interest in machine
learning methods that do not require prior distribution
assumptions and can capture complex internal relation-
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ships among variables. The potential of such methods
lies in the possibility to detect local structural ano-
malies in data while incorporating both statistical and
metrological characteristics of the signal — without the
need to formally establish a tolerance limit.

In machine learning terminology, the concept of
an “outlier” corresponds to the notion of an “ano-
maly”. Although these are not normative synonyms, in
the context of automated data processing they both re-
fer to observations that are inconsistent with the main
structure of the dataset. An anomaly is defined as a
sample that significantly deviates from others based on
one or more criteria — density, distance, reconstruction
error, and so on [3—4].

Anomaly detection methods can be roughly
grouped into several categories:

e distance- and density-based methods (e.g., LOF,
KNN, DBSCAN) [5];

e one-class classification models (e.g., One-Class
SVM, Deep SVDD) [6-7];

e ensemble isolation methods (e.g., Isolation Fo-
rest, Random Cut Forest) [8];

e neural reconstruction models (e.g., Autoenco-
der, Variational AE) [9];

e statistical generative models (e.g., Gaussian
Mixture Models, KDE) [10].

Unlike classical statistical tests that provide binary
decisions (a value is either an outlier or not), machine
learning models allow for:

* a continuous numerical estimate of the degree
of anomaly (e.g., isolation depth in Isolation Forest,
local density in LOF, reconstruction error in Auto-
encoder);

 ranking samples by the degree of their deviation
from the normal structure;

¢ a spatial measurement of the distance from the
boundary of the normal class (e.g., hyperplane in One-
Class SVM);

e accounting for multidimensional correlations be-
tween parameters, which is fundamentally inaccessible
to univariate approaches.

These properties provide a foundation for develo-
ping adaptive metrological criteria for outlier detec-
tion, which do not rely on rigid thresholds, but are
instead flexible regarding the internal structure of the
sample and the specific measurement conditions. For
instance, rather than mechanically eliminating a value
exceeding 30, one can apply a model that evaluates
its distance from the centre of the normal distribution
while accounting for measurement uncertainty, histori-
cal profile, and the stability of the measurement object.

2. Problems of applying machine learning methods in
metrology

In conventional approaches to the processing of
measurement data, the acceptability of any mathe-
matical procedure is based on reproducible statistical
principles: each stage of analysis — from hypothesis

testing to uncertainty evaluation — has clear mathe-
matical and regulatory justification. Machine learning
methods, on the contrary, originate from a different
paradigm — they are aimed at generalizing the beha-
viour of complex systems based on pattern recognition
in data, without prior hypothesis formulations. This
fundamental difference gives rise to several critical
challenges in the metrological context.

First and foremost, the results of machine learning
algorithms are typically the product of an internal loss
function optimization process, which lacks direct phy-
sical or statistical interpretation in metrological terms.
For example, the “anomaly index” assigned to a point
by a model is not a function of standard error or any
statistical significance criterion, but rather a heuristic
value derived from the structure of the internal feature
space representation. As a result, unlike classical statis-
tical tests, there is no method that allows verification
of a null hypothesis stating whether a given value is
an outlier at a defined significance level.

A second major issue lies in the absence of
a formalized system of confidence in the result: in
conventional methods, one can calculate a confidence
interval, evaluate standard or expanded measurement
uncertainty, whereas machine learning lacks an equiva-
lent tool. This prompts the question: with what proba-
bility can a given point be considered an outlier based
on the decision of a model? How can such a deviation
be justified in the context of metrological characteris-
tics such as repeatability, stability of measurement, or
known measurement error? Standard machine learning
models fail to provide answers to these questions.

Furthermore, in cases of small datasets, which are
typical for metrological experiments, machine learning
methods face significant methodological limitations.
Specifically, classification and anomaly detection al-
gorithms require a sufficient amount of learnt data to
build a model with acceptable generalization capability.
With small sample sizes (n = 5—10), common in met-
rology, most machine learning models exhibit unstable
behaviour: their internal structures, such as decision
trees or latent spaces, adapt to random fluctuations
that lack physical significance. In contrast, statistical
methods may retain partial robustness when robust or
specialized approaches adapted to small samples are
applied. Therefore, even if an anomaly is correctly
identified, it cannot be interpreted as a metrologically
justified outlier.

Of particular importance is the issue of tracea-
bility. In classical data processing — especially with
statistical methods — each step from data acquisition
to decision-making can be documented, reproduced,
and verified. In contrast, most machine learning mo-
dels, especially deep neural networks, have opaque de-
cision-making structures due to multilevel nonlinear
transformations of input data. This makes it impossible
to trace the reasoning behind each individual result or
elimination. Such opacity contradicts key requirements
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of metrological assurance, as defined, for example, in
ISO/IEC 17025 [11], where traceability, interpretability,
and justification of results are mandatory criteria for
the credibility and suitability of a method.

3. Evaluation of the reliability of outlier detection results
From the standpoint of metrological analysis, it is
fundamentally important not only to detect potential
outliers in measurement data, but also to justify the
correctness of the decision to eliminate them. In other
words, it is necessary to assess whether the observed
value is truly incompatible with the characteristic
structure of the dataset, or whether it merely appears
anomalous due to the peculiarities of the operation
of a model. In traditional statistics, such justification
is based on hypothetical distributions of measurement
results and confidence probabilities, which allow for
quantitative estimation of the risks of Type I and Type
II errors. In contrast, most machine learning methods
do not directly apply such criteria, as these models ty-
pically do not rely on parametric assumptions and lack
established interpretations of statistical significance. As
a result, even objectively detected deviations cannot
be automatically interpreted as metrologically justified
outliers without additional validation procedures.

To address this issue, it is advisable to focus on
the variability of measurement results as an objective
metrological criterion. One possible approach involves
analysing the change in the standard uncertainty of
Type A after the elimination of questionable outliers,
with subsequently repeated measurements to restore
the initial sample size. This approach is based on the
following principles:

1. Restoring the sample size (n): Elimination of
even objectively erroneous values changes the number
of observations, which directly affects the uncertainty
evaluation. To ensure metrologically valid comparison,
the number of measurements shall be restored to the
original level by performing repeated observations un-
der identical conditions.

2. Comparison of variability: For each sample —
before and after the elimination of anomalous values —
the standard uncertainty (or another dispersion metric)
is calculated. If, while maintaining the same number
of measurements, a significant reduction in variability
is observed, this indicates the incompatibility of the
eliminated value with the main set.

3. Uncertainty reduction criterion: If the uncertain-
ty after outlier elimination decreases only insignificant-
ly, the value in question cannot be confidently regarded
as a distortion, since it does not significantly affect the
metrological homogeneity of the sample. Conversely, a
substantial reduction — by a factor of several times —
may serve as indirect evidence of its anomaly.

4. Quality control of repeated measurements: It is
necessary to consider the possibility that new outli-
ers may appear among the additional measurements.

Therefore, it is advisable to reapply the chosen ano-
maly detection method to the updated dataset and ve-
rify its internal stability.

5. Metrological interpretation of deviations: In ad-
dition to quantitative analysis, it is important to ac-
count for the physical meaning and technical context
of the result. A questionable value may arise not from
random noise, but from a violation of measurement
conditions, malfunctioning of the measuring instru-
ment, external influences, or operational errors. Such
interpretation increases confidence in the decision to
eliminate the value.

The proposed approach was tested during the
analysis of outlier detection results obtained using the
Isolation Forest method, based on real-life measure-
ments performed at the State Primary Measurement
Standard of the unit of volumetric and mass flow rate
of liquid, volume, and mass of liquid flowing through
a pipeline (DETU 03-04-04) [12]. The objective
of the study was to evaluate the effect of eliminating
potential outliers on the standard measurement uncer-
tainty of Type A.

As input data, the values of measurement errors
obtained during the calibration of Coriolis flow meters
with three different diameters were used. For each flow
meter, measurements were performed at three fixed
flow rate points; in each sample, 11 results were col-
lected. Based on the initial data, the standard uncer-
tainty of type A was calculated.

The Isolation Forest method was adapted to the
specifics of the metrological task: it was applied sepa-
rately to each sample to identify potentially anomalous
values. Values classified by the algorithm as outliers
were eliminated from the sample, after which additio-
nal measurements were performed in sufficient quantity
to restore the initial number of observations n. Once
the sample was updated, the method was applied again
to check for remaining outliers. The cycle of “detecti-
on — elimination — additional measurements” was repea-
ted until the model ceased to detect new anomalies.

At each stage, the current estimate of the standard
uncertainty of type A was calculated. A comparison of
the initial and final values made it possible to assess
the degree to which the elimination of identified points
affected the variability of the results. The summarized
results of the study are presented in Table 1.

The values from the table are illustrated in Fig. 1.

Within the framework of the experimental study
on the effectiveness of the Isolation Forest model for
detecting outliers in metrological measurements, a
comparison was made between the Type A standard
uncertainty before and after the elimination of anoma-
lous values identified by the algorithm. One of the key
approaches to evaluating the reliability of detected out-
liers was the analysis of the dynamics of the dispersion
of results, which quantitatively reflects the influence
of individual points on the variability of the sample.
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Table 1
Standard measurement uncertainty of Type A (%)
Designation Flow rate point | Before outlier elimination |After outlier elimination | Number of outliers
45 t/h 0.0330 0.0225 1
Flow Meter Nel (DN50) 25 t/h 0.0911 0.0308 3
5 t/h 0.0202 0.0202 0
5 t/h 0.0202 0.0177 1
Flow Meter Ne2 (DNI5) 2.5 t/h 0.0312 0.0312 0
1 t/h 0.0239 0.0202 1
1 t/h 0.0325 0.0131 2
Flow Meter No3 (DNG6) 0.5 t/h 0.0236 0.0212 1
0.1 t/h 0.0607 0.0433 2
0,1
0,09 » —o— Before outlier removal
0,08 —l— After outlier removal
007 [\
0,06 / \ »
0,05 / \ /
ooa |/ \ / =
0,03 / \
0,02 - —
0,01
0
45t/h 25t/h 5t/h 5t/h 2,5t/h 1t/h 1t/h 0,5t/h 0,1t/h
(DN50)  (DN50) (DN50) (DN15) (DN15) (DN15) (DN6)  (DN6)  (DN6)

Mass flow rate point of the liquid (pipeline diameter)

Fig. 1. Calculation of standard uncertainty of type A

Specifically, at the flow rate point of 25 t/h,
the standard uncertainty decreased from 0.0911% to
0.0308%, that is, by more than three times. A similar
effect was observed at the 1 t/h point, where the un-
certainty decreased from 0.0325% to 0.0131%. Such a
significant change, despite the relatively small number
of eliminated measurements (three and two respective-
ly), indirectly confirms that the values identified by the
algorithm were indeed statistically and metrologically
separated from the rest of the data — that is, incon-
sistent with the general structure of the sample.

This observation is consistent with an intuitive cri-
terion: the elimination of a true outlier should result
in a noticeable decrease in internal dispersion, provided
the value in question had indeed distorted the estimate
of variability.

However, the situation becomes significantly more
complicated at those points where the number of de-
tected outliers is small and the changes in standard
uncertainty are marginal. For instance, at the 0.5 t/h
flow rate, the elimination of a single measurement
resulted in a decrease in standard uncertainty from
0.0236% to 0.0212%, i.e., which is about by 10%. Gi-
ven the original number of observations (# = 11), such
a reduction is relatively weak and does not provide a
sufficient basis for confidently interpreting this value
as an outlier. In such cases, the observed decrease in
variability may be caused not due to the elimination

of a true anomaly, but by random fluctuations or the
sensitivity of the model to local deviations.

This leads to several key limitations of the pro-
posed approach:

 First, there is no normatively defined threshold
for how much the uncertainty must decrease for the
eliminated value to be justifiably classified as an outlier.
For example, a reduction of 20% or even 50% does not
automatically carry metrological status if not supported
by a formal procedure or confidence probability.

» Second, there remains a risk of misinterpretation
if the repeated measurements, conducted after outlier
exclusion, themselves contain implicit anomalies. In
such a case, the observed decrease in variability may
be falsely interpreted as evidence of validity, while it is
merely a result of random sample stabilization.

* Third, with small sample sizes, even one or two
values can disproportionately affect the estimate of un-
certainty, increasing the sensitivity of the approach to
random fluctuations that lack physical or metrological
justification.

* Fourth, repeated measurements are not always
feasible under real-life conditions — particularly in the
case of unstable measurement objects, high experiment
cost, or when verifying unique specimens using refe-
rence installations. Therefore, the proposed approach
has limited applicability outside controlled laboratory
environments.
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Taken together, these limitations indicate that
while the proposed method allows empirical verifica-
tion of model output stability in individual cases, it
does not eliminate the fundamental issue — the ab-
sence of an objective, formalized criterion of truth for
an outlier. This, in turn, complicates the validation of
machine learning models in metrology and highlights
the need for further development of formalized ap-
proaches to assessing the reliability of results obtained
from such methods.

4. Conclusions

The conducted study revealed a key methodolo-
gical issue at the intersection of modern data proces-
sing algorithms and metrological practice: the absence
of harmonized criteria for assessing the reliability of
outlier detection decisions based on machine learning
methods. Despite the high potential of such models —
particularly their ability to identify structurally separa-
ted observations without prior assumptions about dis-
tribution — they do not provide a normatively justified
rationale for eliminating specific values from measure-
ment results.

The approach proposed in this paper, based on
the analysis of changes in Type A standard uncertainty
before and after the elimination of outliers under the
condition of restoring the original sample size, demon-

strated limited but potentially useful effectiveness as an
empirical indicator of the separateness of anomalous
values. At the same time, it revealed several fundamen-
tal limitations: the need for repeated measurements,
the lack of guaranteed quality of new observations, the
absence of a clearly defined threshold for the “signi-
ficance” of uncertainty reduction, as well as sensitivity
of the results to the number of eliminated points.

Thus, even when the correctness of actions is
experimentally confirmed, there remains a need for
the development of more formalized and normatively
aligned mechanisms for reliability assessment. The pro-
posed direction — comparing variability while preserving
the number of measurements — should be considered
a preliminary hypothesis outlining the construction of
a comprehensive system for metrological validation of
outlier detection algorithms.

Further study should aim to develop methodo-
logically reasoned criteria for the reliability of analy-
tical results that account for regulatory requirements,
the nature of measurement errors, repeatability con-
ditions, and the specifics of the measured quantities.
This opens a new direction in applied metrology — the
development of verifiable approaches to trust in artifi-
cial intelligence models, which is a critical prerequisite
for their safe and regulated integration into the mea-
surement domain.
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AHorauis

VY crarti posmisigaloThesl MpoOaeMU, TMOB’sI3aHi i3 3aCTOCYBaHHSIM MoOJEIei MaIlllMHHOTO HaBYaHHS Ui BUSIBJICHHS

BUKUMIB y MeTpoJioriyHux Bubipkax. [lompu 3maTtHicTh Takux Mopeneil ineHTUdiKyBaTh CKJIAIHI BiIXWJIEHHS Y CTPYKTYpi
BUOiIpKM 06€3 HEOOXiMHOCTI MOMepeAHiX CTaTUCTUYHMX MPUITYIeHb, BOHUM He 3a0e3IeuyloTh HOPMATMBHO OOIPYHTOBaHUX
KPUTEPiiB OLIIHKU TOCTOBIPHOCTI IPUUHSTUX pillicHb. 30KpeMa, BiICYTHI iHTEepIIpeTOBaHi MOKAa3HUKU JAOBipHM, METPOJIOTiYHA
MPOCTEXYBaHICTb i (hopMasli3oBaHi MOPOTroBi 3HAYEHHS, sIKi O JO3BOJISUIM OJHO3HAYHO BU3HAYUTU, UM € T€ UM iHILE 3HA-
YeHHsI CTIpaBXHIM BUKUAOM. OTHUM i3 3alpOTIOHOBAHMX DIllleHb € OIliHKAa BIUIMBY BUKJTIOUEHHS aHOMAJIBHUX 3HAYEeHb,
BUSIBJICHUX 3a JIOIMIOMOToI0 Moneni Isolation Forest, Ha cTaHIapTHY HEBU3HAYEHICTh TUIY A 3a YMOBU 30€pEKEHHS MOYaTKO-
BOTO OOCSTYy BUOIpKM IUISIXOM IMOBTOPHUX BUMIiploBaHb. Takuii migxig Oyjg0 anpoOOBaHO HAa OCHOBI peajbHUX pe3yJbTaTiB
BUMIipIOBaHb BUTPATU PilMHU 3 BUKOPUCTAHHSIM KOPiOJiCOBUX BUTPATOMIipiB pi3HMX diameTpiB. OTpuMaHi pe3ybTaTu Mii-
TBEPAWIN €(DEKTUBHICTh MiAXOAY B TMX BUIAJIKaX, KOJW BUIAJICHHS 3HAYeHb, 1110 CIIOTBOPIOBATIMU pe3yJIbTaT, MPU3BOIUIO
0 CYTTEBOTO 3MEHIIIEHHS BapiaTUBHOCTI BUMiptoBaHb. BogHouac Oyio BUSBIEHO HU3KY OOMEXEHb, 30KpeMa UYYTJIMBICTh
MO 10 MaiuX BUOIpOK, MPaKTUYHY HEMOXJIMBICTh IMPOBEIEHHS ITOBTOPHUX BUMIpIOBAaHb y OaraTboX peajbHUX CUTYyaLlisiX
i BiZICyTHICTh 00 €KTUBHOTO KPUTEPit0, KU OM BM3HAUAB “CYTTEBICTH” 3MEHIIICHHST HEBU3HAYEHOCTI. 3a3Ha4YeHi pe3yabTa-
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TH THIKPECTIOTh HEOOXiMHICTh MOJANBIINX TOCITIIKEHb 10A0 (opMaizalii KpuTepiiB JOBipy MpU BUSBICHHI aHOMAJIiii
Yy METPOJIOTii, OCOOJIMBO B KOHTEKCTi BilITOBIMIHOCTI MixKHapomHMM cTaHmaptaM, TakuM sk ISO/IEC 17025.

[lonpu 3a3HavyeHi OOMEXXEHHSI, 3aCTOCYBaHHSI MOAeJeil MalMHHOTO HaBYaHHS BiIKPUBAE HOBI MOXJIMBOCTI IS
aBToMaTru3allii aHajli3y MeTPOJIOTIYHUX aHUX i BKa3ye€ Ha MOTpedy Y CTBOPEHHI Y3rO/KEHUX MiIXOMiB 10 iHTerpailii Takux
pillleHb Y HOPMAaTUBHE CEepPEeIOBUIIIE.

KurouoBi ciaoBa: merposnoris; craHmapTHa HeBU3HAYEHICTh, MAlllMHHE HABYAHHS, BUKWIM, aHOMaii; o6pobKa
pe3yJibTaTiB BUMipIOBaHb.
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