Application of H-maser with increased power in fountain atomic clocks

Автор(и)

  • Mikhail Aleynikov National Research Institute for Physical-Technical and RadioTechnical Measurements − FGUP “VNIIFTRI” Mendeleevo, Moscow Region, Russia, Російська Федерація

DOI:

https://doi.org/10.24027/2306-7039.1A.2017.100411

Ключові слова:

Metrology of time and frequency, The satellite system GLONASS, Rubidium frequency standard of a fountain type, Hydrogen generator of increased power

Анотація

The state of the art in time and frequency metrology defines many fields of human activity. At present in Russia a special attention is devoted to development of the global navigation satellite system GLONASS and its functional supplements. According to the federal program “Maintenance, advancement and usage of the system GLONASS in 2012-2020 years” a creation of terrestrial rubidium fountain atomic clock with limit achievable Allan deviation no more than 2∙10-16 is envisaged in 2016 year. A main problem of the fountain atomic clock is a phase noise of interrogation signal probing the atomic clock transition. In the present work a solution of the problem via application of the hydrogen maser with increased power as a reference in synthesis scheme of the interrogation signal is described. This solution caused by simplicity because it does not require cryogenic microwave oscillators or complicated optical systems application.

Біографія автора

Mikhail Aleynikov, National Research Institute for Physical-Technical and RadioTechnical Measurements − FGUP “VNIIFTRI” Mendeleevo, Moscow Region, Russia

junior researcher

Посилання

Bureau International des Poids et Mesures. SI Brochure: The International System of Units (SI) // 8th edition updated in 2014, section 2.1.1.3, pp. 112-113, 2006.

Bureau International des Poids et Mesures. SI Brochure: The International System of Units (SI) // 8th edition updated in 2014, Appendix 2, Practical realization of the definitions of some important units, Recommended values of standard frequencies, 2006.

Ю.С. Домнин, В.Н. Барышев, А.И. Бойко, Г.А. Елкин, А.В. Новоселов, Л.Н. Копылов, Д.С. Купалов. “Цезиевый репер частоты фонтанного типа МЦР-Ф2” // Измерительная техника, Н. 10, сс. 26-30, 2012.

Santarelli G., Laurent Ph., Lemonde P., Clairon A., Mann A.G., Chang S., Luiten A.N., and Salomon Ch. Quantum projection noise in an atomic fountain: A high stability caesium frequency standard // Phys. Rev. Lett. 82: 4619-4622, 1999.

E.A. Donley, T.P. Heavner, M.O. Tataw, F. Levi, and S.R. Jefferts. Progress towards the second-generation atomic fountain clock at NIST // Proceedings of the IEEE International Frequency Control Symposium and Exposition, pp. 82-86, 2004.

Weyers S., Bauch A., Hubner U., Schroder R., and Tamm Ch. First performance results of PTB’s atomic caesium fountain and a study of contributions to its frequency instability // IEEE Trans. Ultrason., Ferroelect. And Freq. Contr., 47:432-437, 2000.

Levi F., Lorini L., Calonico D., and Godone A. Systematic shift uncertainty evaluation of IEN CSF1 primary frequency standard // IEEE Trans. Instrum. Meas., 52:267-271, 2003.

Y. Ovchinnikov, and G. Marra. Accurate rubidium atomic fountain frequency standard // Metrologia, V. 48, pp. 87-100, 2011.

C. Fluhr, S. Grop, B. Dubois Y. Kersale, E. Rubiola, and V. Giordano. Characterization of the individual short-term frequency stability of cryogenic sapphire oscillators at the 10-16 level // IEEE Trans. Ultrason., Ferroelect. And Freq. Contr., V. 63, N. 6, pp. 915-921, 2016.

Jung I.D., Kartner F.X., Matuschek N., Sutter D.H., Morier-Genoud F., Zhang G., Keller U., Scheuer V., Tilsch M., and Tschudi T. Self-starting 6.5-fs pulses from a Ti:sapphire laser // Opt. Lett., 22:1009-1011, 1997.

Boyko A. I., Yolkin G. A., Ghestkova N. D., Kurnikov G. P., and Paramzin V. A. Hydrogen maser with improved short-term frequency stability // Proceedings EFTF, Neuchatel, 2001, pp. 406-408.

Aleynikov M. S., Boyko A. I. On the single-state selection for H-maser and its signal application for fountain atomic standard // Proceedings EFTF, Neuchatel, 2014, pp. 169-172.

##submission.downloads##

Опубліковано

2017-04-20